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The aim of this lecture is to cover the minimal theoretical machinery that goes into the proof of the following no-go
theorem:

Theorem 1 (No-Go Theorem). Let A and B be two GPT systems interacting with the gravitational field G. Then
thee following three statements are incompatible:

e (GIE) A and B can become entangled,
e (Subsystem Locality) G mediates the interaction between A and B,
o (Classicality) G is a classical system.

This theorem is a generalisation due to Thomas Galley, Flaminia Giacomini, and John Selby [1], of the arguments
made in [2] and [3] in favour of the claims that the observation of Gravity Induced Entanglement (GIE) is evidence for
the non-classical nature of gravity. It is a proof within Generalised Probabilistic Theories (GPT), a theory of theories,
a framework commonly used in the study of the foundations of quantum mechanics. By proving a result such as the
one above within a framework, one can rule out entire families of theories.

I. OPERATIONAL ASPECTS OF QUANTUM THEORY

While the interpretation of quantum theory is still a hotly debated issue [4], there is one thing that everyone
agrees to: quantum theory is remarkably successful in predicting the outcomes of measurements [5] and so while
people disagree on whether we can think of the quantum state |¢) as representing some objective state of affairs,
we all agree on how to extract the empirical content of the quantum state: probabilities and, more generally, the
expectation values of various mathematical operators corresponding to physically measurable quantities. Besides one’s
metaphysical preferences, thinking of the quantum formalism as first and foremost a tool for computing probabilities
can be illuminating, as many features of Hilbert space quantum mechanics become clearer. Entire books can be (and,
indeed, have been) written about this topic. Here we will focus on some basic things. The introductory chapters of
[6] are a great resource for all this.

A. Density operators and the partial trace

For the purpose of computing probabilities, the correct quantum state to assign to a system is not a normalised
vector in Hilbert space, but a density operator (aka density matrix):

Definition 1.1. A density operator p is Hermitian operator with all positive eigenvalues such that trp = 1.

There are two ways to motivate this. First, suppose that believe that normalised states are the correct way to assign
a quantum state to your system, but you are not quite sure what state to assign. This could be because of noise
or because you are a bad experimentalist, or any other reason. Say you believe that your system is in the quantum
state |t;) with probability p;, then when you compute the expectation value of some operator O, you will have to
first conditionalise on your ignorance of the “actual” state:

(0) = sz' (il Oli) = tx pO, (1)
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where we have defined the density operator
p="> pili)eil, (2)
and the trace operation

trO := Z (i|O]i) (3)

where |7) is any orthonormal basis (doesn’t matter which) for the Hilbert space.

This way, it looks like you only need the density operator formulation when you have some ignorance of the “true”
state, and you can get along without them otherwise. However, when dealing with composite systems, the situation
is basically unavoidable. Indeed, say that you are considering two systems A and B, but for some reason you can only
access A. For example, B is some really hard or expensive to measure system. Given that the Hilbert space associated
with the composite system is the tensor product of their respective space Ha ® Hg, this means you can only measure
operators of the form Oa ® Ig. Assume that the systems are in some state |¢)). Any state in Ha ® Hpg can be written
in the form

lv) = ZTm lam) |bm) (4)

for some orthonormal bases (ONB) {|ay,)} and {|b,,)} and for some non-negative real numbers r,, whose squares sum
to 1. This is known as the Schmidt decomposition, and it is an extremely handy result. We then have that

<7/"OAA|¢> = Zrmrn <am|OA|an> (b |br) = ZT% <an|OA|an> = trpAOA, (5)

mn

where in the last step we defined the density operator
PA = Z 7o anXan - (6)
n

We notice that B dropped out, but it seems that we need to compute the Schmidt form of our state to compute
properties of A. However there is a fast way to get pa, and this is by using the partial trace operation:

trgp =Y (bmlplbm) (7)

m

where {|b,,)} is a ONB for Hg, (again, it doesn’t matter which one). Then you can easily show that

pa = trg [P)a]. (8)

Therefore, whenever you are interested on observables on only part of a system, you can use the reduced density
matrix pa = trg p.

Since, in general, apparata are noisy, and systems are always subsystems of other systems, it is more appropriate
and operational to use density operators as states for quantum systems.

Now it is a good time to recall the distinction between pure and mixed states. A pure quantum state is one that can
be written in the form p = |1)¢], all the others are mixed. This is another way to see that the density operator state
space is more general than the vector in Hilbert space. If you are handed a big density matrix, it is not necessarily
clear wether it can be put into this form. There is however a very simple test of purity:

Proposition I.1. A quantum state p is pure if and only if tr p? = 1.

The state space of a quantum system is a convex set, meaning that if you have two have two density operators p;
and pa, then a convex (or stochastic) combination ppy + (1 —p)pa, where p € [0,1] is also a valid state. This seemingly
innocuous mathematical property is central in GPTs. The physical interpretation is that if you can prepare two
states, you can have a machine that prepares either state at random. The convex structure also offers an equivalent
characterisation of purity:

Proposition I.2. A state is pure if and only if it cannot be written as a nontrivial convex combination of other
states.



Exercise I.1. Check that the result of taking the trace or the partial trace is independent of the basis used in the
summation.

Exercise 1.2. Read up on the Schmidt decomposition.
Exercise 1.3. Prove Proposition I.1.

Exercise 1.4. Prove Proposition 1.2.

B. State space of a qubit

Let us consider as an example the state space for qubits. The space of density operators for a qubit is the set of
2 X 2 positive matrices. There is a neat way to visualise it. The 2 x 2 identity matrix

()
() (1) ()

form a basis for self-adjoint 2 x 2 matrices. If 7 is a 3-component vector such that |#] < 1, then the matrix

and the Pauli matrices

73, (11)

1.1
:—I[ —_
P=3tt5

is a unit trace, positive operator. Thus, the space of density operators of a qubit is isomorphic to a 2 dimensional
ball, the Bloch ball. The boundary (|7] = 1) consists of the pure states, and the inside the mixed states.

Exercise I.5. Compute trp and tr p? for p in (11). Compute its eigenvalues and eigenvectors. Compute the expec-
tation value of spin measurements.

Exercise 1.6. Show that the state space of the qubit is convex, by checking that if p; and py are of the form (11),
then so is a convex combination of them.

Exercise 1.7. Show that a mixed state of a qubit can be written as a convex combination of pure states in many
different ways. You may consider, without loss of generality, the state %H + %zag.

C. Sending states to states: instruments and CPTP maps

Since the density operator is a natural generalisation the state vector in the context of classical uncertainty and
multipartite systems, and if we are interested in arbitrary manipulations of a given system, it is good to study possible
maps between density operators on their own terms.

First, let us allow that the input and output Hilbert spaces Hi, and Hoyt are different. This way, we can represent
operations such as adjoining a system, or ignoring parts of the system. Since quantum experiments yield different
outcomes probabilistically, we represent an evolution by a set of maps £ = {E;} from positive operators on H;, to
positive operators on H,t, where ¢ labels one of the mutually exclusive outcomes. We ask that tr E;p is the probability
p(i|p, £) of the outcome ¢ to happen and thus that

0<trE;p<1 and ZtrEip =1, (12)

for all density operators p. Next, we ask each of the E; to be convex linear, meaning that

Ei(pp+ (1 —p)o) =pEip+ (1 —p)Eio (13)



for any two states p and ¢ and probability p. This is so that the probabilities given by tr E;p behave consistently
with stochastic mixtures. Finally, we want the state after applying F; to still be a positive operator. This requires
that E; is a completely positive map. Positive means that F;p is a positive operator on H,t whenever p is a positive
operator on H;,. Completely positive means that, for arbitrary Ha, (I3, ® E;) is a positive map from the operators
on Ha ® Hin to those on Ha ® Hout, where Iy, is the identity map on operators of # . The requirement of complete
positivity ensures that the applying £ to a subsystem always yields a well-defined state of the combined system.

In sum, each of the maps F; is a trace non-increasing, completely positive (CP) map. If the outcome i attains, then
the state is updated to

Eip
tr E;p’

pr— (14)

which is again a density operator. The set £ = {E;} is called an instrument, or quantum operation. We can also

define a map induced by & itself: if we do not know or care about the result, we weight each of the outcomes above
by their probability p(i|p, £) = tr E;p and then we have

. E;
ep="plilp,€) 'Op =" Ep. (15)

tr &

Any evolution with a single outcome, like £, or an instrument with a single outcome, is known as a quantum channel,
and is represented by a completely positive, trace preserving (CPTP) map. The formalism of positive operators and
completely positive maps is the most general way to formulate the evolution of quantum systems.

Let us connect this rather abstract formalism to unitary evolution. If a system undergoes a unitary evolution U,
then its density operator changes as

pr—Ulp] =UpU™. (16)

The map U is then known as a unitary channel. Suppose instead that the system S under consideration interacts
with another system E initially in some o, so that the evolution of the combined system is a unitary channel, and
then the second system is ignored. The resulting evolution for the state p of the initial system is

pr— trg [Up®o]]. (17)

This is a CPTP map. Indeed, any CPTP map can be represented this way, with o a pure state, a result known as
Stinespring dilation [? |. Say that the ancillary system instead is subjected to a projective measurement represented
by the projectors { Py}, then each map

Ep:p— [I®P)U[p® o]l (18)

is a trace non-increasing CP map, and together they form an operation. Thus every instrument can be understood as
the system interacting with an ancilla, and then the ancilla being measured. This result is known as Ozawa dilation

7).

Exercise 1.8. Check that the unitary channel in (16) is trace preserving.
Exercise 1.9. Check that the Ej in (18) indeed form an instrument.

D. Entanglement

The definition of entanglement is as straightforward as it is unilluminating: a state is entangled if it is not separable.
A vector in Hilbert space |¢) € Ha ® Hg is said to be separable if it can be written as

V) = [va) [¥s), (19)
while a density operator on Ha ® Hp is separable if it can be written as a mixture of product states:
p=> piry @py. (20)

Great, so what? The first thing to note is that it is not trivial at all to tell if any density operator is an entangled
one just by staring at it. Fortunately, for pure states, there is a super fast way to tell:



Proposition I.3. A pure state p of a composite system A ® B is entangled if and only if the reduced density operator
tra p is mixed.

This makes precise one weird aspect of entanglement: if we think of a pure state as a state of maximal knowledge, then
it is possible to have maximal knowledge about a composite system but have partial—and, in the limit, minimal—
information about its parts.

For mized states, determining whether a state is separable is much harder and finding necessary and sufficient con-
ditions for entanglement in general systems is still work in progress [7]. However there are many sufficient conditions
for entanglement. One such test is the positive partial transpose (PPT) criterion.

Definition I.2. The partial transpose p' of a bipartite state p is obtained by transposing on only one of the subspaces:

(im|p"|jn) = {inloljm). (21)

Proposition I.4 (PPT criterion). If p' is a positive operator, then p is separable [8].

For states of C? ® C? and C? ® C?, this condition is both necessary and sufficient [9]. To experimentally use the PPT
criterion, one needs to obtain the full density matrix, which requires many measurements to determine. Often it is
cheaper to measure an entanglement witness [9, 10].

Definition 1.3. An entanglement witness W is an observable such that

trWo >0 (22)
for all separable states o but

trWpo <0 (23)
for at least one entangled state pg.

It follows that any state such that tr Wp > 0 is an entangled state. Thus, measuring a negative expectation value
for W in the lab implies! that the state generated is an entangled state.

Exercise 1.10. Prove Proposition 1.3. Hint: use the Schmidt decomposition.

E. Local operations and classical communication cannot create entanglement in quantum theory

A well-known result in quantum information theory is that two spatially separated agents, each acting on their
own quantum system, cannot create entanglement between their systems, even if they coordinate their actions by
transmission of classical information [7].

The argument is quite simple. A local operation is represented by a map £ ® F, where £ and F are channels. The
channels could represent an instrument where the outcome is ignored. This is because the two parties are not allowed
to communicate, so they cannot coordinate their behaviour. Allowing one transmission of classical information from
one party to the other, allows the choice of one operation conditional on the result of the other. This situation is one
round of LOCC (local operations and classical communications) and is represented by a map

Z E; @ FY, (24)

where {E;} is an instrument and each F() is a channel. The F(V)s have to be deterministic channels as the second
party is not allowed to send the result of their operation to the first party in this scenario. The map representing a

I The intuition behind this is pretty simple. We recall the map (A, B) — tr ABis a scalar product on the space of Hermitian operators,
making the latter a normed real vector space. The set of S separable density operators is a convex subset of this space. It follows that
for any point pg not in S, there is a hyperplane separating S from pg. Then every point on the same side of the hyperplane as pg is
automatically not in S.



round of LOCC where the second party sends information to the first is defined similarly. If the state of the system
is initially separable, it will still be separable after one round of LOCC, since

Z(Ei(@]:(i)) (P®U):ZEiP(@}—(UU:ZPiPi@Ui- (25)

(3

Thus an initially separable state will remain separable after any number? of LOCC rounds.

This result was used in [2] to argue that the detection of GME would prove that gravity is a quantum system.
However, as pointed out by [3], one might distrust an argument based completely on quantum theory, as we do not
know that gravity obeys either quantum or classical laws, and might follow a new set of laws. They argue that one
ideally needs a similar argument in a more general framework. This is achieved in [11] and [1]. We will focus on the
latter in the coming sections I and III.

II. GENERALISED PROBABILISTIC THEORIES

We now broaden our horizons to consider a framework that generalises the operational formulation of quantum
theory. The main idea behind operationalism is that any scientific theory should—at the very least—provide prob-
abilistic predictions about laboratory procedures. One might argue that a good theory scientific theory should also
provide an explanation, or a picture of what is going on in nature, and tell us something about the world outside our
laboratories, but a theory cannot be a good scientific theory if it can’t tell us what we should expect to see in a given
experiment.

This idea has led to the development of a few related mathematical frameworks, most notably Generalised Proba-
bilistic Theories (GPTs) [12], Operational Probabilistic Theories (OPTs) [13], and Process Theories [14], and, more
recently, Constructor Theory [15]. These are frameworks in which the predictive content of different physical theories
can be formulated and compared. They are of great use in studying the information-processing capabilities of different
theories, in a similar way that, say, linear algebra is useful in studying the formal properties of physical theories as
different as quantum mechanics and fluid dynamics: knowing that your theory is a OPT with such and such properties
allows you to immediately derive a host of results. For example, as we will shortly see, in every GPT it is impossible
to send a signal without exchanging a system.

We will focus on the minimal aspects of GPTs required to understand the theorem. For more thorough introduction
to GPTs, see these notes by Markus Miiller [16], or the seminal paper by Johnathan Barret [12].

A. States, transformations and effects

Mathematically, a GPT system S consists of a convex set of states s, a convex set of transformations Ts and a
convex set of effects Es, which map states to real numbers. In general there will be a vector space Vs associated with
S, such that states are vectors, effects are dual vectors, and transformations are linear maps Vs — Vs. States, effects
and transformations are called processes.

Intuitively, this generalises the structure of the operational formulation of quantum theory we saw above, where
the state space is convex, evolutions map states to states, and there are other maps that allow you to compute
probabilities. Quantum theory is a paradigmatic example of a GPT theory, with states as density matrices, CPTP
maps as transformations and applying CP maps and taking followed by tracing as effects. One simple way GPTs
differ from each other is in the shape of the convex set of states and effects.

Operationally, the states X correspond to equivalence classes of preparations of the system (those that yield the
same probabilities), the transformations Ts correspond manipulations (including observations) that can be done to
the system without destroying it or losing it and effects Fs represent manipulations (including observations) after
which the system is then destroyed or simply ignored.

GPTs come with an expressive diagrammatic calculus in which systems are represented by (labelled) wires

2 Note the actual result is a bit stronger than this, see [7] for details.



and processes are represented by boxes with dangling wires

S

T . (27)

S

In particular, states have no input wires and effects have no output wires:

A diagram with no free dangling wires such as

4&

T (29)

4

corresponds to a number (a state in the trivial GPT system).

The diagrammatic calculus becomes particularly useful when one starts considering different systems and how they
interact. Two GPT systems can be composed in parallel by using the tensor product structure of the associated
spaces. The resulting system is then represented by wires side by side

e "

The multi-system diagrammatic calculus provides two related advantages over traditional “1D” formulas. First, a
formal advantage, since it makes redundant a number of equations relating parallel and sequential composition. For
example, the property

(faofi)®(92091) = (f2®g2) o (f1 ® 1) (31)

becomes self-evident, as when building the diagrams corresponding to the left hand side and the right hand side of
the formula above, one obtains the same diagram, namely,

| |
fa g2
I — . (32)
fi g1

The second advantage is one of readability: when there are many systems interacting, it can start to become difficult
to read the formulas, while the diagrams remain lucid.

Exercise II.1. Draw the diagram corresponding to the right hand side of (18).




B. Probabilistic interpretation

By adding extra conditions on a GPT, one can interpret every scalar as a probability. In some GPTs, there is a
distinguished effect, called the discard, represented as

T, (33)

which represents ignoring the system from that point onwards. This allows to define probabilities in the following
way. Let us introduce the empty diagram

< (34)

to represent the number 1. Then a set of states {o;} such that

S = 5

represents a preparation with a probabilistic outcome, where the label ¢ serves to identify the different possible
outcomes. Then the probability of outcome i happening is given by

P (il{o:}) = . (36)

A normalised state, is one such that

Similarly, an operation, also known as an instrument is a set of transformations {7;} such that

T =
|

>

%

_ T (38)

and the probability of the particular transformation 7; happening, given that the system was in the normalised state
o is

_T_
P (T}, 0) = | T (39)

%

With this probabilistic structure, the requirement of convexity is understood, as in the first part of the lecture, as
the requirement that, given the experimental ability of preparing the state o and the ability of preparing the state
o', one is also able to flip a biased coin and prepare the state o with probability p or ¢’ with probability 1 — p.

C. Causality and the conservation of probabilities

As we have just seen, the discard is closely related to the idea that probabilities always sum to 1. However, there
is a close relation in GPTs between the conservation of probabilities and notions of causality. Indeed, diagrams that
only make use of deterministic processes to propagate information, two processes can affect each other only if there is
a system connecting them. Moreover, the result of an operation cannot be affected by the nature of a later operation.
Let us see why.



A transformation 7" on two systems A and B
A [®

T (40)

E
is said to be non-signalling from A to B if
A T A
T = T = (41)

wTs T s

for some T, meaning that if one ignores B after applying T', then one can compute the resulting transformation on
A without knowing the initial state of B. Put in other words, the initial state of B does not affect the statistics of A
via T. It is immediate to prove that any transformation of the form:

i i

ISRE

where Th,Tg and o are normalised, is non-signalling from A to B and from B to A. Indeed
LT HECS I (TN

T | = _ T (43)
- V4

Note that this is quite a general statement. Indeed, ¢ could be a quantum entangled state, or a state of a theory that
allows even stronger correlations. The only substantial requirement is that S and S’ are GPT systems.
Similarly, consider a diagram of the form

| A B

1>

where both 77 and T» are normalised. Then to compute the effect on system B, there is no need to know anything
about T5, since

== B
_|_
T

Thus, in GPTs, later operations do not affect the outcomes of earlier operations. This property is also called no-
signalling from the future.
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D. Classical and non-classical systems

A suitable GPT model of a finite-dimensional classical system can be constructed as follows. Let X be the finite set of
configurations of the system. Then the states of the GPT are the probability distributions over X, the transformations
are stochastic maps on these distributions, and the only effect (the discard) is marginalisation. The state space can be
embedded in a | X|-dimensional real vector space Vx, the stochastic transformations are then represented by stochastic
matrices and the discard amounts to summing all entries in the vector. Classical systems may be combined by making
use of the tensor product of the underlying vector spaces.

The simplest nontrivial example of a classical system is the classical bit. It is associated with the space X = {0,1}
and its state space is isomorphic to the line segment [0,1]. The simplest nontrivial quantum system is the qubit,
whose state space is isomorphic to a ball in 3D space.

Classical systems can be used to model measurements on non-classical systems. Let M be a convex map from the
states of A to states of a classical GPT system X, and let o be a state for system A, then

X

M (46)
A

0’:
is a probability distribution over X, which can represent the probability of various outcomes of the measurement, as
read on a classical pointer variable.

We can diagrammatically express what makes a system classical or not. For example, all classical systems have a
crucial property, namely, that the identity operation can be decomposed as a sum of (or integral over) projectors:

= Z % (47)
rzeX

This property is also known as atomicity of the identity. Thus, when computing probabilities about classical systems,
one can use the classical probability axiom

/b\
/0N /N /2N
P(bla) = ¢ = Z = > ¢ ¢ = ) _P(blz)P(x|a) (48)
V zeX zeX v V rzeX
Y/

This can be taken as meaning that a classical system is always in one of its states, and all probabilistic considerations
are a result of ignorance. Or it can be taken to say that classical systems can be measured without perturbing the
state. Or yet again, there are no interference effects in classical systems. Either way, this property does not hold in
a general GPT, and in particular, it does not hold in quantum theory.

Another property shared by all classical systems is that of state separability. A bipartite state is separable if it can
be written as a convex combination of factored states:

All bipartite classical systems only have separable states. This follows easily from the defining property (47). Thus,
if a GPT system has non-separable states, then the system cannot be a classical system. This allows us to define
entanglement beyond quantum theory:

Definition II.1 (GPT entanglement). Two GPT systems are entangled if they are not in a separable state.
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Exercise I1.2. Prove that all states of a bipartite classical GPT system are in separable. Use the defining property
of classicality (47).

III. NO-GO THEOREM ABOUT THE GRAVITATIONAL FIELD

We have now set up the machinery needed to understand the proof of the no-go theorem by Galley, Giacomini, and
Selby [? ].

We have the definition II.1 of entanglement for GTPs, we have the defining property of classicality (47), what we
are left with is the notion of mediation.

Definition III.1 (Mediation). A system G is said to mediate the interaction between two systems A and B if the
evolution can be written as

A G B
Ig
G | . (50)
I
A G B

where Ipn and Ig are normalised, or as a sequence of such maps.

We are finally ready to prove the theorem.

Proof of theorem 1. Start by assuming that the three systems start in a separable state, and that the evolution is of
the mediated form, with G classical. Using the defining property of classicality,

|

| Is

A A

| = Z %7 Z I Ig
ZAN

- (51)

Ia * * | | | [

] h VR

v N/ N/ |
7 7\
Then define
& &

Dz = Ia and 47; 14 . (52)

Since Ia, a and g are all normalised, we have ) p, = 1, and thus each a, is also normalised. Thus (51) already
shows that A is not entangled with B and G. To show that B and G are not entangled, we use again the defining

property (47) of classicality

||
Y%IB@ = Ey: %7 %‘718@7: %:Pym 4@/7 (53)
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where we have defined the probability distribution p,, and the normalised states b;, in a manner analogous p, and
a,. Putting all together,

| = Z Da Zpylw % = szy . (54)
Ia z y Ty ¢
S ) b

The equation above shows clearly that the result of such interactions mediated by the classical system G leads to
correlations, but not entanglement between A and B, as the final state is separable. This will be true of a sequence
of such interactions. This completes the proof. O

Exercise IIL.1. Read the main text of [1] and the proof of the main theorem in the appendix.

IV. BONUS: ANOTHER NO-GO THEOREM ABOUT THE GRAVITATIONAL FIELD
Recently, Galley, Giacomini, and Selby published another theorem about the non-classicality of the gravitational
field [17]:

Theorem 2 (No-Go Theorem 2). Let A be a GPT system interacting with the gravitational field G via an interaction
R. Then the following statements are incompatible:

e (Reversibility) The interaction R is reversible,
e (Information flow) There is information flow from A to G,
e (Non-classicality of A) A is fully nonclassical,

e (Classicality of G) G is a classical system.

This theorem generalises several arguments that have been presented in the literature that there is no consistent
way to reversibly couple an actual quantum system to a classical system. If we have time, in the lecture, I will go
over the concepts involved in this one.

Exercise IV.1. Read the main text of [17] and the proof of the main theorem in the appendix. Compare the
diagrammatic with the algebraic proof.
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