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Abstract

This work contains a brief overview of the theory of complex dynamics necessary to
understand a result by Tan Lei, namely that the Mandelbrot set is asymptotically self-
similar about certain points on its boundary. Tan Lei proves this by first proving a
general statement about continuous maps on Ck. Here the proof is abridged to avoid the
general case and prove the result directly. This is done with the idea that the conceptual
basis of the proof is made clearer.
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Fractals capture and inspire the imagination of the general population, and thus play
a special role in modern mathematics as some of the most recognised and appreciated
mathematical objects. In this context, the Mandelbrot set plays a starring role, as any
Google query for fractal images will show. Its boundary presents increasing beauty and
complexity as revealed by the videos of continuous magnifications created by computer
enthusiasts, sometimes reaching millions of views on video streaming websites. In
these mind-bending visual journeys at various magnifications, the set often looks like
itself at vastly different scales, while novel patterns, reminiscent of Azerbaijani textiles,
seahorse tails and echinoderms, continually arise.

Figure 1: Details of the Mandelbrot set juxtaposed with images from nature and textiles.
The images of the Mandelbrot set are still frames from a video by Michael Hogg [22],
the other images are available online [23, 24, 25]

Self-similarity in fractals often is explicitly built into the instructions to generate
the object. Notable examples are the Koch curve, and Sierpinski’s gasket. Whatever
deviations from exact self-similarity, such as random angles or deformations, are also
included in the definition. A common definition of the Mandelbrot set, however, in-
cludes neither:

Definition 1. Let c be a complex number and fc : z 7→ z2 + c. Then c is in the
Mandelbrot set if the sequence 0, c, fc(c), fc(fc(c)), · · · is bounded.

This definition has the advantage of being simple to understand with a basic knowl-
edge of complex numbers, and it easy to check that M is contained in the closed disk
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of radius 2 centred at the origin, providing a first way of approximating the Mandelbrot
set with a simple computer program.

What is perhaps striking when one has seen a number of the magnifications, is
to discover that, in the midst of all this complexity, there are indeed points around
which the Mandelbrot set assumes a progressively self-similar character as a sequence
of magnifications is performed. This happens at all points c such that the sequence
0, c, fc(c), fc(fc(c)), · · · initially wanders, then settles on a periodic cycle. These points
are called Misiurewicz points, and are particular solutions of the polynomial equations:

fpc ◦ f lc(0) = f lc(0)

It is remarkable that it is at all possible to find simplicity in the seeming chaos of the
boundary of the Mandelbrot set. This project was undertaken to understand and explain
this behaviour.

As with most questions about the Mandelbrot set, to work with the above definition
is hopeless. To understand this and other features of the Mandelbrot set and its boundary,
it is necessary look at it in the context of complex dynamics and its methods: a rich
intersection of complex and functional analysis, topology and number theory.

The main result in this work was proved by Tan Lei in [3] (Theorem 5.1); this work
hopes to elucidate the proof provided therein. A statement of the theorem is:

Theorem 1 (Tan Lei). Let c0 be a Misiurewicz parameter. Then the Mandelbrot set is
asymptotically self-similar about c0 and is asymptotically similar to the Julia set of the
quadratic map fc0 about c0.

Section 1 provides a short historical context for complex analysis and the discovery
of fractals within it. Section 2 will be dedicated to building the necessary background in
complex analysis. In particular it will present the theory of normal families of functions
of the complex plane, the results of which were fundamental in developing the theory of
complex dynamics, which will be exposed in Section 3. In particular, the Fatou and Julia
set of a holomorphic map will be introduced and many properties of these remarkable
sets proven. This forms the background to the study of the Mandelbrot set, which will
be properly defined and introduced in its natural context in Section 4, and some modern
results reviewed. Section 5 contains the metric framework for the study of (asymptotic)
self-similarity. Sections 6 to 8 follow closely [3], expanding and providing details in
the proofs. Complex dynamics is a very rich field, and it was beyond the scope of this
work to give a complete overview. Proofs that are instructive and reasonably short are
included. The reader will be directed to references when suitable.
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Figure 2: Asymptotic self-similarity Successive magnifications by factors of 10 about the
points 0.366363 + 0.591534i and 0.0252242 + 0.805037i, generated with Mathematica
11 by the author.

1 Historical Note
The subject of complex dynamics is the local and global behaviour of iterates f, f 2, f 3 · · ·
of a function f of the complex plane. A function f is thought as a map determining the
position of a point at timestep n + 1 based on its position at timestep n. The sequence
{z, f(z), f 2(z), · · · }, where fn denotes the n-fold composition of f with itself, is called
orbit of z. Of immediate interest are then the solutions to the equation

z = f(z)

which are called the fixed points of f . The following theorem was already known by
Schröder in the late nineteenth century:

Theorem 1.1. If a complex function f is holomorphic at a fixed point z and |f ′(z)| < 1
then the orbit of all points in a neighbourhood of z will converge to z. This kind of fixed
point is called an attracting fixed point. Similarly, if a point z satisfies

z = fn(z)

it means that after n iterates, the orbit goes through z again: it is a periodic orbit. One
can then look at the map g(z) = fn(z) to see if this orbit is attracting. These are
instances of local behaviour, which concerns itself of arbitrarily small neighbourhoods
of fixed or periodic points. Theorems of local behaviour arose in the late nineteenth
century and first decade of the twentieth century in the works of Schröder , Cayley,
Koenigs, Grévy and Leau, all before the advent of Set theory. A very different question
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is that of global behaviour where the orbit of an arbitrary point in the complex plane is
considered. The meaningful treatment of this question had to wait the beginning of the
twentieth century, set theory, and the works of Paul Montel, Pierre Fatou and Gaston
Julia [1]. These mathematicians proved many results about the awesomely complex
fractals arising in complex dynamics, without ever seeing them with their eyes.

Interest in iterations of complex functions is connected the study of convergence of
the Newton method for determining the roots of a polynomial of any degree. Here an
initial guess z0 for the root is chosen, and then one generates a series of approximations
z1, z2, · · · of the root by iterating the formula:

zn+1 = N(zn) = zn −
f(zn)

f ′(zn)

The global behaviour of Newton’s method for a quadratic polynomial with distinct roots
was understood by Schröder : the orbit of a point z converges to the closest root. If the
initial guess it is equidistant from both roots, the orbit stays equidistant, and the orbit
never converges to a finite solution. Thus the plane is divided in two basins of attraction
and a line. In the neighbourhood of points on the line, the dynamics is sensitively
dependent on initial conditions: orbits of points arbitrarily close to the line will converge
to either root, or not converge at all.

The behaviour of Newton’s method for a polynomial of third degree is illustrative of
the complexity that can arise in global behaviour. Consider the iteration for finding the
third roots of unity, the solutions of z3 − 1 = 0. The map is

z 7→ z − z3 − 1

3z2
(1)

We know that the solutions are the three points 1, e±
2π
3
i, and indeed guesses close

enough will be converging to these. A first guess for the boundaries would be that the
plane is divided in three sections, with straight lines originating from 0 as boundaries.
Numerical studies show that this is not the case. In fact, according to [2], John Hubbard
was teaching a class in elementary calculus at Orsay when he stumbled upon the ques-
tion of which root does a guess converge to. In contrast with Julia and Fatou, Hubbard
had the possibility to experiment with computers. He wrote a program that calculated
the trajectory of each point of the plane, and colour coded the coordinates of that point
according to which root the point converged to. As he increased the resolution, he was
reportedly bewildered. There was no neat boundary between two regions: between any
two regions between any two colours, lied the third. With further computing power, one
can appreciate the fine structure of this boundary, called the Julia set.
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Figure 3: A glimpse of Chaos The basin of attractions for the dynamical system 1, with
different resolutions

2 Complex Analysis
We present basic results of complex analysis, the terminology is standard and the reader
is directed to references like [6] or [7] for details of proofs in Sections 2.1 and 2.2.
In particular, the results about normal families are worked out in detail as they are
fundamental in the study complex dynamics and it is possible to give a good overview
here. For details about normal families of arbitrary Riemann surfaces, see Chapter 3 in
[8].

In the following, R will denote the real numbers, C will denote the set of complex
numbers, D the unit open disk centred at the origin and Dr(z) the open disk of radius
r > 0 centred at point z.

2.1 Holomorphic functions
Definition 2. Given an open set U of C, a function f : U → C is holomorphic at
z0 ∈ U if the first derivative

z 7−→ f ′(z) = lim
ε→0

f(z + ε)− f(z)

ε

is well-defined and continuous for all z in a neighbourhood of z0, independent on the
specific way ε tends to 0. The function is holomorphic on U if it is holomorphic at all
points in U .
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Differentiability of a function of a complex variable is a much stronger requirement
than differentiability of a function of a real variable. Indeed, we will see that if a function
f : U → C is holomorphic, then not only is it smooth, meaning that derivatives of any
order exist and are continuous, but it is analytic meaning that in a neighbourhood of any
point z0 in U , the function f can be expressed as a power series

f(z) = f(z0) + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 + · · ·

One starts by expressing a function f of one complex variable as the sum of two real
valued functions in two real variables by the following isomorphism:

R× R −→ C
(x, y) 7−→ x+ iy

(2)

It is then possible to prove that if f is a holomorphic map with non-zero derivative at a
point z, then it is invertible in a neighbourhood of f(z), and its inverse is holomorphic.
This result is known as the Inverse function theorem.

A straightforward consequence of the definition of holomorphicity is that if

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

is holomorphic at z0 = x0 + iy0 then the functions u and v are differentiable with
continuous derivatives in both variables and satisfy the Cauchy-Riemann equations at
(x0, y0): {

∂xu = ∂yv

∂yu = −∂xv
(3)

This has two important consequences:

Theorem 2.1 (Cauchy Integral Theorem). Let Ω be a region of C bounded by a simple
closed curve and let f : Ω → C be holomorphic. Then the integral along a smooth
curve γ in Ω is null: ∮

γ
f(z) dz = 0 (4)

Theorem 2.2 (Cauchy Integral Formula). With the same setting as above, let z0 be a
point inside the domain bounded by γ. Then the value of f and its derivatives at z0 are
determined by the values on γ:

f(z0) =
1

2πi

∮
γ

f(ω)

ω − z0

dω (5)

One can prove using the Cauchy integral formula that if a function f : U → C
then it is analytic in a neighbourhood of any point z0 in U with the following Taylor
expansion:

f(z) =
∞∑
n=0

an(z − z0)n
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with

an = f (n)(z0) =
n!

2πi

∮
γ

f(ω)

(ω − z0)n+1
dω (6)

Equation (6) is known as the Cauchy integral formula for derivatives. It implies
further constraints to holomorphic functions.

Corollary 2.3 (Cauchy’s Derivative Estimate). If f : Ds(z0) −→ Dr(z1) is holomor-
phic, then |f ′(z0)| ≤ r/s.

Corollary 2.4 (Liouville’s Theorem). If a function f(z) is bounded and holomorphic
on the whole complex plane, then it is constant.

In the last sections of this work we will use functions in two complex variables.
These are treated entirely analogously to functions in one complec variables. In partic-
ular the definition of holomorphic map f : C2 → C is that the partial derivatives in both
variables exist, and each satisfy the Cauchy-Riemann equations. The inverse function
theorem works the same and gives rise to the implicit function theorem:

Theorem 2.5 (Implicit Function Theorem). Let U ⊂ C2 be open set and let f :
U → C be holomorphic such that f(z0) = 0 for some z0 = (x0, y0) ∈ U . Then
if |∂xf(x, y0)|x=x0 6= 0, then there is a neighbourhood V ⊂ C of y0 and a function
g : V → C and a neighbourhood W ⊂ U ∩ (V × C) such that f(x, y) = 0 if and only
if y = g(x) for all (x, y) ∈ W .

Another consequence of the Cauchy integral formula is the Maximum Modulus prin-
ciple:

Theorem 2.6 (Maximum Modulus Principle). If f is holomorphic but not constant on
a connected domain Ω then |f | has no maximum inside Ω. The maximum is obtained
on the boundary.

This theorem implies the following very useful lemma connecting geometry to anal-
ysis, that will be used time and again. It is useful to think of holomorphic functions as
maps, sending subsets of the sphere to other subsets.

Lemma 2.7 (Schwarz Lemma). If f is a holomorphic mapping of the unit disk D to
itself that fixes the origin, then |f ′(0)| ≤ 1. Additionally, either

• |f ′(0)| = 1 and f is a rotation: f(z) = λz with λ ∈ ∂D, or

• |f ′(0)| < 1 and f is a strict contraction: |f(z)| < |z| for z 6= 0.

Proof. Define q(z) = f(z)z−1. Then q is holomorphic on D and q(0) = f ′(0). Thus
q|Dr is also holomorphic, for all r < 1. Furthermore we have

∣∣∣q|Dr ∣∣∣ < |z−1| < r−1. So
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for z ∈ Dr we have q(z) ∈ D1/r. By the Maximum Modulus Principle, |q(z)| can only
reach maximum on the boundary, so for all z ∈ D we have q(z) ∈ D̄.

• Suppose |f ′(0)| = 1 then |q(0)| = |f ′(0)| = 1. But we have seen that |q(0)| ≤ 1
on D so by the Maximum Modulus Principle we have q(z) = λ is a constant of
modulus 1, thus f is a rotation.

• Suppose |f ′(0)| < 1 then |q(z)| < 1 for all z ∈ D since if it equals section1 then
by the Maximum Modulus Principle again |f ′(0)| = 1, which is a contradiction.
So |f(z)| < |z| for all z ∈ D so f is a contraction.

Definition 3. A holomorphic map f : U → C is

• conformal if its derivative is nowhere 0 on U .

• univalent if it is injective.

• biholomorphic if it is bijective and conformal.

Another topological result s a consequence of the Cauchy Riemann equations is

Theorem 2.8 (Open Mapping Theorem). The image of an open set by a holomorphic
map is an open set.

2.2 The Riemann sphere and meromorphic functions
Liouville’s Theorem seriously restricts which holomorphic functions are interesting. If
f is a non-trivial holomorphic function of the entire complex plane, then it must obey

lim
z→∞

f(z) =∞

Thus in complex analysis, one is prompted to deal with infinity. This is done by
considering the Riemann Sphere Ĉ, the one point compactification of the complex plane.
This is a prime example of a Riemann surface1 other than C itself . If Ĉ = C ∪ {∞},
then an atlas is provided by the two following charts:

id : Ĉ\{∞} −→ C
z 7−→ z

ξ : Ĉ\{0} −→ C
z 7−→ z−1

∞ 7−→ 0

(7)

1a smooth complex manifold of one complex dimension

8



where ξ(∞) = 0. Since the definition of a holomorphic function of a subset of C can
be extended naturally to the sphere, by saying that a function f is holomorphic in a
neighbourhood of infinity if the function

f̃ = ξ ◦ f ◦ ξ−1

is holomorphic in a neighbourhood of infinity. The function f̃ is called the representa-
tive f near infinity.

Working in the complex sphere allows us to consider functions that holomorphic
except at a set of points called singularity. A function f has a singularity at z0 if

lim
z→z0

f(z) =∞

This is a removable singularity if there is a positive integer n such that (z − z0)nf(z)
does not have a singularity. This allows us to introduce another class of functions.

Definition 4. A function f : U → Ĉ is a meromorphic function if it is holomorphic and
has a non-accumulating set of removable singularities, also called poles.

Ratios of two holomorphic functions are always holomorphic. In particular, all ra-
tional functions, that is functions of the form f(z) = p(z)/q(z) where p and q are two
polynomials with no common roots are meromorphic. Additionally, the only meromor-
phic functions of Ĉ are the rational functions.

Proof. A rational function has a finite number of removable singularities: one at each
of the roots of the denominator and one possibly at ∞ if the numerator has a higher
degree than the denominator. Thus all rational functions are meromorphic. On the
other hand, since the sphere is compact, every meromorphic function needs to have a
finite number of singularities. Then if f : Ĉ → Ĉ is meromorphic, so is f |C, which
we can then multiply by a polynomial q to obtain a holomorphic function. Thus z 7→
f |C(z)q(z) is equal to its Taylor expansion. Moreover, for the singularity at infinity to
be removable, the Taylor expansion must be of finite order, in other words, f |C(z)q(z)
is a polynomial.

Proposition 2.9. Rational maps are surjective on the sphere.

Proof. Let f(z) = p(z)/q(z). Then f(z) =∞ once for every root of q. For any ω 6=∞
such that, the equation

p(z)

q(z)
= ω

is equivalent to
p(z)− ωq(z) = 0

which by the fundamental theory of algebra, has deg f solutions counted with multi-
plicity.
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2.3 Normal Families and Montel’s Theorem
We will be interested in a topology on meromorphic functions called the topology of
uniform convergence on compact subsets, or topology of local uniform convergence.
The supremum, or uniform norm, defined of a meromorphic function f : U → C is
given by

||f ||∞ = sup
x∈U
|f(x)|

A sequence {fn : U → C} of meromorphic functions is uniformly convergent if it
converges under the uniform norm. Additionally it is said to converge to a function
f : U → C locally uniformly if for every compact subset K of U the sequence of
maps fn|K : K → V converges uniformly to f |K . Uniform convergence preserves
holomorphicity.

Theorem 2.10 (Weierstrass Uniform Convergence). The uniform convergence limit f
of a sequence of holomorphic functions fn : U → C is also holomorphic. Furthermore,
the sequence of derivatives f ′n converges uniformly on compact subsets to f ′.

Proof. We first prove the uniform convergence of {f ′n} to a holomorphic function g on
compact subsets, then use that to show the convergence of {fn}.

By assumption, {fn} is a Cauchy sequence in the supremum norm, so that (fn −
fm) : U → Dε for any ε > 0 and n,m large enough. Additionally, for any z ∈ U ,
there is r > 0 such that Dr(z) ∈ U and we can apply the Cauchy derivative and get
|f ′n(z) − f ′m(z)| ≤ ε/r. For each compact subset K of U there is a minimal radius,
but ε can be made arbitrarily small by increasing n and m so {f ′n|K} is itself a Cauchy
sequence. Additionally each f ′n is holomorphic on U so must be bounded on K. By
the completeness of bounded continuous functions, {f ′n|K} converges uniformly to a
continuous and bounded function g.

Now let γ be a path in U . Then
∫
γ f
′
n(z)dz →

∫
γ g(z)dz as n → ∞. Thus

f = lim
n→∞

fn is an indefinite integral of g, which is a continuous function. Thus f is
holomorphic and g = f ′.

Definition 5. A family F of functions U → C is

• bounded if there is a R > 0 such that ||f ||∞ < R for all f ∈ F ,

• equicontinuous if for any z0 in U and for any ε > 0 there is a δ > 0 such that if
|z − z0| < δ, then |f(x)− f(x0)| < ε for all f ∈ F .

Lemma 2.11 (Ascoli-Arzelá). Let K be a compact subset of C. Any bounded and
equicontinuous sequence of functions fn : K → C has a uniformly convergent subse-
quence.
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Proof. Boundedness allows to construct a subsequence {fnk} converging point-wise on
a dense countable subset ofK. The equicontinuity of the sequence and the compactness
of K, we select a finite cover of K by disks of equal radius in which the variation from
the centres is bounded. The fact that {fnk} converges uniformly on at least a point in
each of these disks is enough to prove that it converges uniformly on K.

Theorem 2.12 (Ascoli-Arzelá). A family F of functions K → C is compact in the
uniform convergence topology if and only if it is closed, bounded and equicontinuous.

Proof that I implies II. Suppose F is closed, bounded and equicontinuous. Then, ev-
ery subsequence is bounded and equicontinuous, and thus has a uniformly convergent
subsequence by Lemma 2.11. Additionally, since F is closed, the subsequence must
converge to an element of F , thus F is compact.

Suppose F is compact, then it is immediate that it be closed and bounded. Suppose
F fails to be equicontinuous at some point z0. Then there exists a sequence {zn} in K
such that |zn − z0| < 1/n and a sequence {fn} in F such that |fn(zn) − fn(z0)| > ε
for some ε > 0. However, since F is compact, there should be a subsequence fnk that
converges uniformly onK to some continuous function f . In particular then fnk(znk)→
fnk(z0) but this is a contradiction.

Definition 6. A family F of meromorphic functions is normal if every sequence admits
a subsequence that converges on compact subsets. A normal family is a pre-compact set
under the topology of local uniform convergence.

Let us prove a criterion for a family F to be normal.

Lemma 2.13. If a family F of functions U → C is equicontinuous on compact sets of
U , then it is normal.

Proof. Since equicontinuous families are bounded on compact sets, F is bounded and
equicontinuous on each compact set. Then considering an exhaustion of U by compact
susbets on can use Lemma 2.11 and diagonal argument to select, for each sequence in
F a subsequence that converges uniformly on all compact compact subsets.

Theorem 2.14 (Little Montel Theorem). Every bounded familyF of holomorphic func-
tions on an open subset U of C is normal.

Proof. The boundedness of F together with Cauchy’s derivative estimate imply that the
derivatives of the functions in F are bounded on compact subsets, which in turn implies
that F is equicontinuous on compact subsets. Applying Lemma 2.13 completes the
proof.

This criterion can be strengthened by considering the following proposition.
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Proposition 2.15 (Normality is a local property). Let F be a family of functions U →
C. If for every point in U , the restriction of the functions ofF to an open neighbourhood
form a normal family, then F is normal.

Proof. Let Uz denote the neighbourhood of each z in which the restrictions form a nor-
mal family. Each compact set can be covered by a finite number of such neighbourhoods
and given any sequence in F one can use a diagonal argument to select a sequence that
converges uniformly on K. Thus F|K = {f |K | f ∈ F} is pre-compact and by (follow-
ing a close argument to) the Ascoli-Arzelá Theorem, is bounded and equicontinuous.
Lemma 2.13 in turn implies that F is normal.

Corollary 2.16. A locally bounded family of meromorphic functions is normal.

Finally, we state an even less stringent condition for a family to be normal. This
was shown in [9] by Montel in 1912. It is only thanks to this theorem that Fatou and
Julia where able to make their drastic advances in the study of iteration [1]. We will see
applications of this normality criterion below. The proof relies on a thorough study of
holomorphic functions on hyperbolic Riemann surfaces, which is beyond the scope of
this work. For a modern proof see Theorem 3.7 in [8].

Theorem 2.17 (Montel’s Normality Criterion). Let U be a domain of Ĉ, and let if F
be a family of meromorphic functions U → Ĉ that omits three or more points of the
sphere, i.e. there are three distinct points a, b, c ∈ Ĉ such that for all f in F , the points
a, b, c are not in f(U). Then F is normal.

3 Complex Dynamics
We start by introducing the basic concepts of dynamics, then move to introduce standard
results. See [8] for a comprehensive exposition.

In dynamics, a meromorphic function f : Ĉ→ Ĉ is thought of as a map telling each
point in Ĉ where to go. Given a map f , we denote called the n-th iterate the n-fold
composition of f with itself, denoted by fn. The set of points

{x, f(x), f 2(x), f 3(x), · · · }

is called the orbit of x under f . If the orbit of a point x0 is just {x0} call it a fixed point.
The quantity f ′(x0), called the multiplier and often denoted λ, plays a crucial role in
determining the local dynamics. Fixed points are the solutions to the equation

f(x) = x
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Alternatively, if p is the smallest positive integer satisfying fp(x0) = x0, then x0 is a
periodic point and its orbit

{x0, x1, x2, · · · , xp−1}

with xi = f i(x0) is called a cycle. The multiplier for this orbit is

(fp)′(x0) = f ′(xp−1)× f ′(xp−2)× · · · × f ′(x1)× f ′(x0)

The classic objects of study in complex dynamics are the following two sets:

• The Fatou set F (f) is the set of points z on which the family of iterates {fn}n∈N,
restricted to a neighbourhood of z, is normal.

• The Julia set J(f) is the complement of the Fatou set.

The Fatou set is exactly the set where the dynamics are Lyapunov stable, meaning
that points starting close to each other remain close for all iterations. More precisely, if
z0 is Lyapunov stable, for all ε > 0 there is δ > 0 such that if z is in Dδ(z0) then fn(z)
is in Dε(f

n(z0)).

Proposition 3.1. A point is Lyapunov stable if and only if it is in Fatou set.

Proof. Saying that f is Lyapunov stable at z0 is the dynamical way of saying that {fn}
is equicontinuous at z0. By the Ascoli-Arzelá theorem, whenever {fn} is normal, it is
equicontinuous. Thus at all points in F (f), f is Lyapunov stable. Assume now that z0 is
Lyapunov stable. Then if {fn(z0)} is bounded away from∞ then from equicontinuity,
{fn} is bounded in a neighbourhood U 3 z0 and thus normal by Corollary 2.16. If
{fn(z0)} is not bounded away from infinity, then there is a subsequence {fnk(z0)}
converging to infinity. Looking at the subsequence {fnk} in a neighbourhood of the
point at infinity, we see that it is normal.

However, except for the simplest maps, the dynamics are not everywhere stable.:

Lemma 3.2. Let f be a meromorphic function on the sphere, of degree at least 2. Then
J(f) 6= ∅.

Proof. Argue by contradiction. Suppose {fn} is a normal family on Ĉ. Then there
exists a subsequence {fnj} that converges uniformly on compact subsets to a meromor-
phic function g : Ĉ→ Ĉ. This function must be a rational function of finite degree. But
deg(fnj) increases without bounds, which is a contradiction.

Before moving on, we consider one of the simplest examples of complex dynamics:
Example. It is instructive to look at the dynamics of

f0 : z 7−→ z2

13



because they can easily be treated analytically. Looking at the map in polar coordinates
it is immediate that

lim
n→∞

fn0 (z) =

{
0 if |z| < 1

∞ if |z| > 1

So fn converges point-wise to the constant function 0 on D, but this convergence is not
uniform. Indeed, since |fn0 (z)| = |z|2n, for any integer n > 0, ||fn0 |D||∞ = 1. Thus
uniform convergence on the whole domain fails to capture the behaviour of the orbits in
D. If we consider instead any compact subset K of D, the situation is different. Indeed,
since K is compact, there is r = maxz∈K |z| so that given any ε > 0, for |fn0 (z)| < ε
for all z ∈ K as soon as n > log(ε)/ log(r). That is ||fn0 ||K → 0 as n → ∞ and fn0 |D
converges locally uniformly to 0 and local uniform convergence captures the behaviour
of iterates of z 7→ z2 inside the disk.

What about the behaviour for |z| > 1? Here we can use the coordinate chart near
infinity. In this chart, f becomes

f̃0 : ω 7→ f0(ω−1)−1 = ω2

and thus the behaviour is the same as that around 0. Thus {fn0 } is normal on D and
on Ĉ\D̄. Thus Ĉ\∂D ⊂ F (f0). Indeed one can see that Ĉ\∂D = F (f0) since no
subsequence of {fn0 } can ever converge to a holomorphic function on a neighbourhood
of a point in ∂D, arbitrarily close points inside and outside D converging to different
points.

Thus J(f) = ∂D. The since f0 : eiθ 7→ e2iθ, by writing θ = 2πx, the dynamics here
are conjugate to the doubling map on the unit torus:

x 7−→ 2x mod 1

which is a prime example of a simple chaotic map. All points such that x = 2−n

are eventually mapped to z = 1, which is a fixed point of this map. For odd p, the
points with x = k/p, that is the p-th roots of unity, form a cycle, and that points with
x = k/(2np) are eventually mapped to this cycle. This characterises the behaviour of
all points with x rational. It is possible to show that the orbit of any point for which x is
irrational is dense on ∂D.

Proposition 3.3. The Fatou set is open, the Julia set is closed.

Proof. The Fatou set is open because of the local nature of normality. The Julia set is
closed since it is its complement.
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A set U is fully invariant under a map f if U = f(U) = f−1(U). The following
results simplify the study of periodic orbits, since they allow to look at the dynamics of
iterates of f , where the cycle is split into fixed points.

Lemma 3.4 (Invariance Lemma). The Fatou and Julia sets are fully invariant.

Proof. That F (f) is fully invariant follows from the fact that holomorphic maps are
continuous, open maps. J(f) is then fully invariant too.

Lemma 3.5 (Iteration Lemma). The Fatou and Julia set of f are the same as those of
any iterate fk.

Proof. It suffices to prove that F (fk) = F (f). If {fn}, then so is {fnk}, thus F (f) ⊂
F (fk). Then consider that if {fnk} is normal, so is {f i◦fnk} for any i = 1, 2, · · · , n−1,
so that {fn} =

⋃n−1
i=1 {f i ◦ fnk} is normal and F (fk) ⊂ F (f).

3.1 Local Fixed Point Theory
A number of things can be deduced about the dynamics of the mapping in the neigh-
bourhood of fixed or periodic points. Indeed the local dynamics at a point z = fp(z)
will be determined by the multiplier λ = (fp)′(z). In the following discussion, we will
often set p = 1 and assume without loss of generality that z = 0 is the fixed point, so
that

f(z) = λz + a2z
2 + a3z

3 + · · ·

A fixed point z is topologically attractive if there exists a neighbourhood U of z
such that successive iterates fn are defined on U and that fn → z uniformly on U . A
fixed point z is topologically repelling if there exists a neighbourhood V of z such that
for all x in V other than z there is a positive integer n such that fn(x) 6∈ V . There is a
simple test to determine if a fixed point is attracting or repelling.

Proposition 3.6. A fixed point of a holomorphic map is topologically attractive if and
only if its multiplier satisfies |λ| < 1.

Proof. We assume that f(0) = 0 as above so that there are constants C, r0 > 0 such
that

|f(z)− λz| < C|z2|

for all |z| < r1. Then we can choose c such that |λ| < c < 1, and there is r2 > 0 such
that |λ|+ Cr1 < c. Then for all |z| < r0 = min{r, r0},

|f(z)| ≤ |λz|+ C|z2| ≤ c|z| < |z|
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so that upon iteration we have for all z ∈ Dr0

fn(z) ≤ cn|z| ≤ cn|r0|

meaning that fn(z)→ 0 uniformly over Dr0 .
Conversely, if 0 is topologically attracting, then an iterate fn will map a sufficiently

small disk Dε onto a proper subset of itself, and by the Schwarz lemma, this will imply
|λn| = |(fn)′(0)| < 1 which is equivalent to |λ| < 1.

Proposition 3.7. A fixed point of a holomorphic map is topologically repelling if and
only if its multiplier satisfies |λ| > 1.

Proof. That a fixed point with multiplier |λ| > 1 is topologically repelling is very simi-
lar to the proof of the case |λ| < 1.

To prove the converse, assume that z0 is a repelling fixed point. Then z0 cannot be
topologically attracting and, by the previous result, λ ≥ 1. Let V be the neighbourhood
such that for all z in V there is a positive integer n such that fn(z) 6∈ V . Then for each
k ∈ N we can construct the set

Vk = N ∩ f−1(V ) ∩ f−2(V ) ∩ · · · ∩ f−k(V )

of points whose first k images are in V . By construction f(Vk) ⊂ Vk−1∩f(V ). However
{Vk}k∈N is a sequence of nested sets whose intersection is the set {z0} consisting of the
single point that does not escape V , we have diam Vk → 0 as k → ∞. Therefore
Vk−1 ⊂ g(V ) and f(Vk) ⊂ Vk−1 for k large enough. Then one can use the Schwarz
lemma to prove that |λ| > 1.

Definition 7. A fixed point is superattracting or geometrically attracting if λ = 0 or
0 < |λ| < 1, respectively.

Theorem 3.8. Kœnigs Linearisation Let f be a holomorphic map with periodic point
z0 of period p and multiplier λ such that |λ| 6= 0, 1. Then there exists a unique bi-
holomoprhic mapping φz0 from a neighbourhood of z0 to a neighbourhood of 0 such
that

φz0 ◦ fp(z) = λφz0(z)

such that (φz0)
′(z0) = 1.

Proof for attracting case. Proof of uniqueness. Let 0 be the fixed point. Assume there
is another such map ψ. If we write ω = φ(z) then the transition function ψ ◦ φ−1 is
holomorphic, with Taylor expansion:

ψ ◦ φ−1(ω) = b1ω + b2ω
2 + b3ω

3 + · · ·
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Additionally, this map commutes with multiplication by λ since

ψ ◦ φ−1(λω) = ψ ◦ φ−1
(
φ ◦ f(z)

)
= ψ ◦ f(z) = λψ(z) = λψ ◦ φ−1

Thus we see that for all n ≥ 1 we have λn−1bn = bn and since λ is neither 0 nor a root
of unity, we must have bn = 0 for all n ≥ 2. It follows that ψ(z) = b1φ(z), so that the
two functions differ only by an overall scaling. By requiring φ′(0) = 1 one chooses a
unique map.

Proof of existence. Same setting as in the proof of Lemma 3.6, with the added
constraint that c is chosen so that it satisfies c2 < |λ| < c < 1. Then for all z in Dr0 ,

|fn+1(z)− λfn(z)| ≤ C|fn(z)|2 < Cr2
0c

2n

Dividing both sides by |λn+1| and setting φn(z) = λ−nfn(z) yields that |φn+1(z) −
φn(z)| converges to 0 uniformly and geometrically so that the functions φn converge
uniformly to a holomorphic function φ. The identity φ ◦ f(z) = λφ(z) follows, as well
as φ′(0) = 1, so that this is the required conformal map.

Proof for repelling case. The point z0 is a fixed repelling point of fp with multiplier
λ 6= 0. Then there are two neighbourhoods U ⊃ V 3 z0 such that fp|V : V → U
is biholomorphic, with inverse g : U → V . The point z0 is then an attracting fixed
point of g with multiplier λ−1. We then obtain the Kœnigs linearisation φz0 for g. We
can assume that U was chosen small enough that φz0 is well-defined on the whole of U .
Then for all ω ∈ U we have

φz0 ◦ g(ω) = λ−1φz0(ω)

Then setting z = g(ω) ⇐⇒ ω = g−1(z) = fp(z), we have, for all z ∈ V :

φz0(z) = λ−1φz0 ◦ g−1(z)

⇐⇒ λφz0(z) = φz0 ◦ fp(z)
(8)

Kœnigs linearisation characterises the behaviour of a map in the neighbourhood of
repelling periodic points attracting periodic points with multipliers |λ| 6= 0, 1 and jus-
tifies calling them geometrically repelling, attracting points. The points with multiplier
λ = 0 are called superattracting. Let z0 be a superattracting fixed point of a function
f . We call the local degree of f at z0 the first integer n such that (fn)′(z0) 6= 0. The
following result justifies the term superattracting.

Theorem 3.9 (Böttcher Theorem). Let z0 be a superattracting fixed point of a map f .
Then there exists a unique biholomoprhic mapping φ from a neighbourhood of z0 to a
neighbourhood of 0 such that

φ ◦ f(z) = φ(z)n
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where n is the local degree of f at z0. This map is unique up to multiplication by a
(n− 1)th root of unity.

The proof of this function theorem is along the lines of that of Kœnigs linearisation.
To prove existence one considers the convergence of the functions

φk(z) = fk(z)1/nk

for a particular choice of the branch of the root.

Definition 8. The basin of attraction A = A(z0) of an attracting point z0 is the set of
all points z such that fn(z)→ z0 as n→∞. The immediate basin A0 is the connected
component of A that contains z0.

From the foregoing, we can see that attracting and superattracting fixed points of f ,
as well as their basins of attraction, belong to F (f), since the iterates converge locally
uniformly to the fixed point. The same can be said for attracting and superattracting pe-
riodic points, since F (fp) = F (f). Additionally, we can see that repelling periodic and
fixed points belong to J(f). This is because the derivative of fn grows geometrically
with n, no sequence of iterates can converge to a meromorphic function.

We have fully characterised the behaviour around periodic points with multiplier
|λ| 6= 1. The behaviour at these points, deemed indifferent or neutral is more subtle and
depends on the algebraic properties of the multiplier. If λ is a root of unity, then the
fixed point is called parabolic. Assume 0 is a parabolic fixed point then there is q such
that λq = 1 and

f q(z) = z + amz
m + · · ·

so that iterates fnq can never converge since their p-th derivative at 0 grows arithmeti-
cally with n. Thus parabolic points belong to the Julia set. However, it is possible to
show that in any neighbourhood U of 0 there are points that converge uniformly to 0.

For further discussion, see [8].

3.2 Properties of the Julia set
These are standard results, mostly consequences of Montel’s normality criterion (The-
orem 2.17). These results were pioneered by Gaston Julia and Pierre Fatou before the
advent of computer technology to visualise the stunning structures it describes.

We call the grand orbit of a point z0 in Ĉ the set of points whose orbit eventually
intersects that of z0. In other words, the grand orbit of z0 is the set of points z for wich
there are n and m such that fn(z0) = fm(z).

Proposition 3.10. Let f be rational function of degree at least 2. Then there are at most
two points whose grand orbit is finite, and they must be superattracting periodic points.
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Proof. Let G be the grand orbit of z. Clearly G is fully invariant, meaning that f(G) =
G = f−1(G) and so if G has finite cardinality, f maps G bijectively onto itself, thus
G is a cycle. Additionally, since every point has deg f ≥ 2 pre-images counted with
multiplicity, each point in G is a critical point. Suppose now that there are three points
a, b, c ∈ Ĉ whose grand orbit is finite. Then f maps subsets of Ĉ\{a, b, c} to Ĉ\{a, b, c},
and thus the family of iterates is normal everywhere on C by Montel’s Normality Crite-
rion. This is a contradiction since J(f) 6= 0.

This implies that the dynamics of f in any neighbourhood of a point on the Julia
set are transitive. This has a number of interesting consequences on the dynamics and
structure of the Julia set. Transitivity is taken as one of the signs that a system is chaotic.

Theorem 3.11 (Transitivity). Let z0 ∈ J(f) and let N be an arbitrary neighbourhood
of z0. Then its orbit

U =
∞⋃
n=0

fn(N)

contains all of the Julia set, and all but at most two points of Ĉ.

Proof. Since z0 ∈ J(f), {fn} is not normal in any neighbourhood of z0, thus Ĉ\U
must consist of at most two points a, b by Montel’s normality criterion. Since the a has
no pre-image in U , but must have at least one preimage, it is either fixed a fixed point
or part of a two-cycle with b. Thus a and b have finite grand orbit is finite and hence
belong to F (f). All the points in J(f) are then in U . If N is chosen small enough to
not contain neither of the finite grand orbit points, then Ĉ\U will consist exactly of the
set of points whose grand orbits are finite.

This has the following consequence for the dynamics of f on J(f):

Corollary 3.12 (Iterated preimages are dense). The set of pre-images f−n(z0), n ∈ N,
of z0 is dense in J(f).

Proof. Consider a point z ∈ J(f) and any neighbourhood N of it. Since by transitivity
the orbit ofN contains all J(f), there exists at least one point ω inN such that fm(ω) =
z0, for some m. Since J(f) is invariant, ω ∈ J(f).

Perhaps more interesting are the consequences on the structure of the Julia set itself.

Corollary 3.13. Either J(f) has no interior, or J(f) = Ĉ.

Proof. Assume z0 is in the interior of J(f). Then there is a neighbourhood N ⊂ J(f)
of z0, and by invariance of J(f), the orbit U of N is contained in J(f). However
by transitivity, U omits at most two points, and so does J(f). Since J(f) is closed
J(f) = Ĉ.
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Corollary 3.14. J(f) has no isolated points.

Proof. If J(f) were finite, by invariance it would be a finite grand orbit, hence in F (f).
So J(f) is infinite. Since J(f) is compact, it contains at least one accumulation point
z0. The pre-image of a sequence accumulating at z0 contains sequences accumulating
at the pre-images of z0. Since the iterated pre-images of z0 are dense in J(f) we have a
dense set of accumulation points, so no point is isolated.

Corollary 3.15. Let A be a basin of attraction of an attracting periodic point. Then
J(f) = ∂A.

Proof. Let z0 ∈ J(f). By transitivity the orbit of any neighbourhood N of z0 intersect
A, which in turn implies that N intersects A and z0 ∈ ∂A. Now assume z0 ∈ ∂A and
let N be a neighbourhood of z0. If p is the period of the attracting cycle, any limit of
{fpn|N} will have a discontinuity. Thus z0 ∈ J(f).

This last result has profound implications on the structure of the Julia set whenever
there are more than two attractors, as Hubbard noticed when looking at the behaviour of
Newton’s method for a third order polynomial. Indeed, a set has to be very complicated
if every point has to be on the boundary of three sets. The reader is invited to try and
draw what a set like this would look like.

3.3 Global Theory
In this section, we present a final characterisation of the structure of the Fatou and
Julia sets. This will culminate in the statement of the classification of periodic Fatou
components.

Lemma 3.16. The Kœnigs linearisation φz0 of a geometrically attracting fixed point
extends to the whole of the basin of attraction, so that the following diagram commutes.

A
f

- A

C

φz0

?

λ·
- C

φz0

?

Proof. The Kœnigs linearisation φz0 is defined on a neighbourhood U of z0. The orbit
of every point in A will eventually enter U , that is, for any z in A there is n such that
fn(z) is in U . We then simply set φz0(z) = λ−nφz0

(
fn(z)

)
.
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Since φ′z0(z0) = 1, it maps a neighbourhood of z0 biholomorphically to a neighbour-
hood of 0. This means that there is ε > 0 a conformal map ψε : Dε → A0 such that the
following diagram commutes:

Dε

λ·
- Dλε

A0

ψε

?

φz0

6

f
- A0

φz0

6

ψε

?

However, unlike φz0 this cannot be extended to the whole of C. Indeed there is a
maximal value for r.

Lemma 3.17. The local inverse ψε of the Koenig linearisation around an attracting fixed
point extend to some maximal open disk Dr. It extends homeomorphically to ∂Dr and
the image of this circle contains a critical point of f .

Proof. Step 1. There exists some maximal r such that the inverse can be extended
analytically. Assume this is not the case. Then the inverse can be extended to a function
over the entire complex plane. If A0 is bounded, then Liouville’s theorem implies that
ψε is constant. If A0 is not bounded, then the image would still omit all the points in
the Julia set. Since J(f) consists of infinite points, by Picard’s theorem2 the inverse is
constant. This is a contradiction so there must be a maximal r.

Step 2. The function is well defined and extend homeomorphically to the boundary.
By step 1, there exists a maximal r > 0 such that there exists a local inverse φ−1 : Dr →
A0. Now take any ω on ∂Dr. Then λω is in ∂Dr. Now write φ−1(ω) = f−1 ◦ φ−1(λω),
where f−1 is the local inverse of f on A0, which exists by definition of r.

Step 3. φ−1(∂Dr) contains a critical point of f . Consider ω0 ∈ ∂Dr. If φ−1(ω0) is
not a critical point of f , then there exists a local inverse g of f around φ−1(ω0). Now
there are values of ω close to ω0 for which φ(λω) lands in the neighbourhood where g
is defined, so that one define φ−1(ω) = g ◦ φ−1(λω), thus extending the domain of φ−1.
Since ∂Dr is a compact set, if there were no ω0 ∈ ∂Dr such that φ−1(ω0) is critical, one
could extend φ−1 to a larger disk Dr′ , which contradicts step 1. So there must be at least
one critical point on φ−1(∂Dr).

2This a stronger version of Liouville’s theorem. It says that if a holomorphic function f : C → C
misses two values, then f is constant. Like Montel’s normality condition, it is result from the study
of hyperbolic Riemann surfaces, which is beyond the scope of this work. In the case of a polynomial
function, the basin of a geometrically attracting periodic cycle will always be bounded.
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Theorem 3.18. For any rational map f of degree at least 2, there is a critical point in
the immediate boundary of attraction to any periodic attracting cycle.

Proof. Superattracting cycles contain critical points so the immediate basin contains a
critical point. If z0 7→ z1 7→ · · · 7→ zp = z0 is a geometrically attracting cycle, then
z0 is a fixed point of fp. By the previous lemma, there is a critical point c of fp in the
immediate basin of z0. But since Df p(c) = f ′(c)f ′

(
f(c)

)
· · · f ′

(
fp−1(c)

)
one of the

points in the orbit of c under f must be a critical point of f . Thus there is a critical point
in the immediate basin of the cycle starting at z0.

With a similar albeit more careful analysis, one can prove an analogous result for
parabolic periodic points:

Theorem 3.19. Every parabolic basin of attraction contains a critical point.

Together, these result on an upper bound on the number of attracting and parabolic
periodic points.

Theorem 3.20 (Number of attracting and parabolic cycles). The number of attracting
periodic cycles plus the number parabolic cycles is equal to the number of distinct crit-
ical points. This number for a rational map of degree d ≥ 2 is at most 2d− 2.

We state the following powerful results, and give some details.

Theorem 3.21 (Sullivan’s Classification of Fatou Components). If a rational map of
degree at least 2 maps a connected component U to itself, then there are only four
possibilities. Either U is the immediate basin of attraction of an attracting fixed point,
or a parabolic fixed point, or U is a Siegel disk or Herman ring. The last two are domains
associated with irrational indifferent points, they are topologically a disk and an annulus
respectively, where the dynamics are conjugate to an irrational rotation.

Siegel disks and Herman rings bear the name of the authors that proved their exis-
tence, Carl Siegel in 1942 [16] and Michael Herman in 1979 [17]. Sullivan then proved
in [18] that attracting and parabolic basins and the two rotation domains are the only
four possibilities for invariant Fatou components of rational function. He also proved
that all Fatou components are eventually mapped to a periodic Fatou component, which
is known as the Sullivan Nonwandering Theorem. Shishikura proved in [19] that there
can be at most 2d− 2 distinct cycles of Fatou components.

This in turn implies that most periodic orbits are repelling and in fact,

Theorem 3.22. The set of repelling periodic orbits is dense in the Julia set.
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4 The quadratic family
The quadratic family is the one parameter set of functions

fc : z 7→ z2 + c

where c is complex. This is the simplest non-trivial family of rational functions, however
their dynamics are still subject of intense study. Studying the quadratic family, on learns
about the dynamics of all quadratic polynomials. Indeed if one conjugates fc by an
affine transformation z 7→ az + b one obtains

ω 7→ a

(ω − b
a

)2

+ c

+ b =
1

a
ω2 − 2

a
bω + (ac+ b+

1

a
b2)

which, by selecting a, b and c properly can be made into any quadratic polynomial.
For every c, the point at infinity is a superattracting fixed point. To see this, look at

the map in a neighbourhood of infinity:

f̃c(ω) =
1

ω−2 + c
=

ω2

1 + ω2c

We see that 0 is indeed a superattracting fixed point of f̃c.
This motivates considering the set of points whose orbits are bounded. This is Kc,

filled Julia set. One immediate result is that Kc is contained in the disk closed disk of
radius b(c) = max{2,

√
2|c|,

√
|c|} centred at the origin. Indeed if |z| > b(c) then we

have

|fc(z)| = |z2 + c| ≥ |z2| − |c| = |z|2
(

1− |c|
|z2|

)

>
1

2
b(c)|z| ≥ |z|

(9)

So that iterates fnc converges uniformly to infinity on the complement of any disk of
radius greater than b(c).

Proposition 4.1. The filled Julia set Kc is a compact subset of C, with connected com-
plement. Its boundary is the Julia set Jc = J(fc) and its interior is the union of the
bounded components of Fc = F (fc).

Proof. Evidently, Kc is the complement of the basin of attraction A of the point at
infinity, so it is a closed set. Additionally, since the immediate basin of infinity is an
open neighbourhood of infinity, Kc is also bounded, proving that Kc is compact. It also
follows that δKc = Jc. Finally, to prove thatA is connected, we prove that any bounded
component U of Fc is not a component of A. Suppose U is a component of A, then for
a point z0 ∈ U there is n such that fnc (z0) > b(c). Then the Maximum Modulus implies
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that there is a point z on Jc = ∂U such that fnc (z) > b(c) and thus z ∈ A, which is a
contradiction.

Proposition 4.2. The bounded Fatou components of fc are simply connected.

Proof. Let U be a bounded component of F (fc) and consider a simple closed curve γ
and the set V that it bounds. V must be a subset of K, since otherwise there would
be a point z0 such that fnc (z0) > b(c) and by the Maximum Modulus Principle, there
would be a point z on γ ⊂ U such that fnc (z) > b(c), and thus z ∈ A∞, which is a
contradiction. Additionally, since Jc = ∂A∞, there can be no point in V that is also in
Jc. Thus V ⊂ U .

This implies that there are no Herman rings. Additionally, 0 and ∞ are the only
critical points, there can only be one Fatou cycle, and it must either consist of the basin
of an attracting or parabolic cycle, or of Siegel disks.

Theorem 4.3 (Standard Dichotomy). Either 0 is in Kc and Kc is connected, or 0 is
attracted to infinity and Kc has uncountably many components.

We finally arrive at the definition of the Mandelbrot set:

Definition 9. The Mandelbrot setM is the set of parameters c such thatKc is connected.
By Theorem 4.3 this definition, and the one in the introduction are equivalent. How-

ever, this one carries the conceptual weight of complex dynamics.
For example, when one looks at computer generated pictures of the Mandelbrot set,

there are “islands” that appear, resembling the whole set. When Mandelbrot first saw
these pictures, he conjecture that M was disconnected. One can in fact prove that the
Mandelbrot set is actually simply connected. This is done by looking at the function:

B : Ĉ\M −→ Ĉ\D̄
z 7−→ Bc(c)

(10)

where Bc corresponds to the Böttcher function for fc. It can be proven in a way anal-
ogous to the proof of Proposition 8.1 below, that this is a holomorphic map, tangent to
the identity at infinity and that it is proper: mapping the boundary of M to the boundary
of the disk.

Another interesting result by Mitsuhiro Shishikura [20] is that in a neighbourhood a
generic point on the boundary of M , the Hausdorff dimension of ∂M is 2.

A current open question is whether the boundary of M is locally connected. See
[11].
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4.1 Misiurewicz Parameters
Lemma 4.4. If c is Misiurewicz, then c cannot be periodic.

Proof. If c is periodic, then there is p such that c = fpc (c) but since fpc (c) = fp+1
c (0) =

fpc (0)2 + c, this means that fpc (0) must be 0, so that 0 is periodic. c cannot be Misi-
urewicz.

Theorem 4.5. If c is Misiurewicz, then Kc = Jc.

Proof. Let fpc ◦ f lc(0) = f lc(0). α = f lc(0) is a fixed point of g = fpc and by the
Invariance Lemma, K(g) = Kc. So it will suffice to look at which kind of fixed point α
is. Notice that all the critical points of g are pre-images of 0 under fc. This means that
the multiplier of the orbit is not 0. Also, since the critical point is a pre-image under
g of the eventually fixed point, it cannot lie in the basin of a geometrically attracting,
superattracting or parabolic point. There can be no Siegel disk, as this requires the
accumulation of a post-critical orbit to its boundary, and the orbit of the critical points
is finite so it cannot accumulate. Finally, there can be no Herman ring because the
bounded Fatou components must be simply connected.

Corollary 4.6. If c is Misiurewicz, then all periodic orbits are repelling.

Corollary 4.7. If c is Misiurewicz, then 0 and c are eventually repelling periodic.

5 Self-Similarity
In order to talk about self-similarity, we need to formalise the concept of two shapes
looking like each other, or for a shape to look like itself. These are notions of equality
and convergence, and hence topology is the natural setting. As the filled Julia sets are
compact subsets of C, we will use the Euclidean norm on the complex plane to define a
metric topology on the space of compact subsets of C.

5.1 Definitions
Definition 10. Let H denote the set of non-empty compact subsets of C. Let z ∈ C and
A,B ∈ H .

• The distance of z to B is defined to be the smallest distance of z to an element of
B:

d(z,B) = min
b∈B
|z − b| (11)
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• We define the semidistance of A to B to be the highest distance of an element of
A to the set B:

δ(A,B) = max
a∈A

d(a,B) (12)

• This in turn lets us define the Hausdorff distance between two compact sets:

dH(A,B) = max
{
δ(A,B), δ(B,A)

}
(13)

To motivate dH , one can notice that the semidistane fails to be a metric. Although
it is non-negative, it is easy to see that δ(A,B) = 0 if and only if A is a subset of B.
Additionally, δ(A,B) 6= δ(B,A). However it is easy to check that it does satisfy

δ(A,C) ≤ δ(A,B) + δ(B,C)

We can look at what a neighbourhood looks like under the semidistance. Indeed
δ(A,B) ≤ ε if an only if any point in A is either in B or within ε from it. Let

Nε(B) = {c ∈ C | d(c, B) ≤ ε}

then δ(A,B) ≤ ε if and only if A is a subset of Nε(B).

Proposition 5.1. The space (H, dH) is a complete metric space.

Proof. To prove that dH is a metric, consider:

• Positive definiteness. Non-negative by definition and since δ(A,B) = 0 if and
only if A ⊂ B, dH(A,B) = 0 if and only if A = B.

• Symmetry. By definition.

• Triangle Inequality. By definition.

The proof of completeness is longer, see [4].

In the analysis of (self-)similarity, we often look in the neighbourhood of specific
points: we are interested in the sets within a certain window.

Definition 11. The Hausdorff-Chabauty distance in the window of Dr is defined for
any closed subsets A and B of C as follows:

dr(A,B) = dH
(

(A)r, (B)r
)

(14)

where
(A)r = (A ∩ Dr) ∪ ∂Dr

(B)r = (B ∩ Dr) ∪ ∂Dr
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Note that the union with the circle is taken to ensure compactness of the resulting
sets. Indeed to prove (A)r = (B)r it is sufficient to prove A ∩ Dr = B ∩ Dr i.e. that
they overlap on the open disk. As long as A is closed, (A)r is compact.

Proposition 5.2. Triangle inequalities and relations for dr dH and δ. For any z ∈ C and
A,B ∈ H .

1. d(z, A) ≤ d(z, B) + dH(A,B)

2. δ
(

(A)r, (B)r
)

= δ
(
A, (B)r

)
3. d(z, (A)r) ≤ r for any z ∈ D̄r

4. d(z, (A)r) ≤ d(z, A) for any z ∈ D̄r

5. dr(A,B) = dH(A,B) as soon as A,B ⊂ D̄r

Proof. 1.
d(z, A) = min

a∈A
|z − a|

≤ min
b∈B

min
a∈A
|z − b|+ |b− a|

≤ min
b∈B
|z − b|+ min

b∈B
min
a∈A
|b− a|

≤ d(z, b) + min
b∈B

d(b, A)

≤ d(z, b) + dH(A,B)

(15)

2. This true, as the distance of points in ∂Dr to (B)r is identically 0.

3. On the one hand d
(
z, (A)r

)
is either the distance from z to A ∩ D̄r or r− |z|, the

distance from the circle. On the other hand, d(z, A) is either the distance from
z to A ∩ D̄r, or the distance from z to the part of A beyond the circle, which is
always greater than r − |z|. So d

(
z, (A)r

)
≤ d(z, A).

4. and 5. are self-evident.

We are now ready to formalise notions of (self-)similarity.

Definition 12. Let ρ ∈ C\D̄ and A and B two closed subsets of C.

• A is ρ-self-similar about 0 if for some r > 0

(A)r = (ρA)r
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Similarly, A is ρ-self-similar about x if for some r > 0

(τ−xA)r = (ρτ−xA)r

where τ−x : z 7→ z − x is a translation.

• A is asymptotically ρ-self-similar about x if for any r > 0,

lim
n→∞

dr(ρ
n+1τ−xA, ρ

nτ−xA) = 0

• A and B are asymptotically similar about 0 if for t complex,

lim
t→∞

dr(tA, tB) = 0

Proposition 5.3 (Definition of scaling limit). Let A be asympotically ρ-self-similar
about a point x. Then there exists a unique ρ-self-similar set X such that X ⊂ D̄r

and (ρnτ−xA)r → X as n→∞ for all r > 0. We call this set the scaling limit or limit
model.

Proof. Since {(ρnτ−xA)r}n∈N is a Cauchy sequence in the Hausdorff metric, there is a
unique limit X to this sequence. Then X satisfies (ρnτ−xA)r → X as n → ∞ for all
r > 0. It follows that X is ρ-self-similar.

Proposition 5.4. If A and B are asymptotically similar, and B is (asymptotically) ρ-
self-similar, then A is also (asymptotically) ρ-self-similar.

Proof. Straightforward application of the triangle inequality. We have lim
t→∞

dr(tA, tB) =

0 so that lim
n→∞

dr(ρ
nA, ρnB) = 0 and as (ρnB)r → (X)r as n → ∞ for some X , we

also have (ρnA)r → (X)r as n→∞.

5.2 Relation to holomorphic maps
This formalism provides another way to state the idea that a conformal map resembles
locally translation followed by multiplication by a complex number.

Proposition 5.5. Let φ : U → V be a holomorphic map that fixes the origin, with
ρ = φ′(0) 6= 0. Then for any compact set A ⊂ U , its image φ(A) is asymptotically
similar to ρA about 0.

Proof. Pick any r > 0. If A does not accumulate at 0, the proof is trivial, so assume
that 0 is indeed a limit point of A. Let t ∈ C, then to each point y ∈ tρA ∩ Dr, there is
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a point x in A such that y = tρx, and since y ∈ Dr we have |x| < r
|ρ| |t|

−1, which can be
made arbitrarily small by varying t. Let ε > 0. Then

d
(
y, tφ(A)

)
= min

z∈φ(A)
|tρx− tz|

≤ |tρx− tφ(x)| = |t||x|
∣∣∣∣∣φ(x)− ρx

x

∣∣∣∣∣
≤ r

|ρ|

∣∣∣∣∣φ(x)− ρx
x

∣∣∣∣∣
(16)

Since φ′(0) = ρ 6= 0 we can choose |t| large enough so that
∣∣∣φ(x)−ρx

x

∣∣∣ < |ρ|
r
ε. Since the

choice of y ∈ tρA ∩ D̄r was arbitrary, we have:

max
y∈(tρA)r

d
(
y, tφ(A)

)
−→
t→∞

0

Similarly, for any y ∈ tφ(A) ∩ D̄r there is a x ∈ A such that y = tφ(x). Since
both A and φ(A) are compact sets, and φ(z) = 0 if and only if z = 0, the quantity
T = max

z∈A\{0}
|z| |φ(z)|−1 is defined and finite. Then |x| ≤ T |φ(x)| = T |y/t| ≤ Tr|t|−1.

So
d
(
y, tρA

)
= min

z∈ρA
|tφ(x)− tz| ≤ |tφ(x)− tρx|

≤ Tr

∣∣∣∣∣φ(x)− ρx
x

∣∣∣∣∣
(17)

which again can be made arbitrarily small by increasing |t|. So lim
t→∞

dr
(
tφ(A), tρA

)
=

0.

Corollary 5.6. Let φ : U → V be a conformal map and let A be a closed subset of U .
Then for any a in A, the set A is asymptotically similar about a to its image φ(A) about
φ(a), up to a rotation by λ = φ′(a). That is limt→∞ dr

(
tτ−aA, tλτ−φ(a)φ(A)

)
= 0.

Proof. It suffices to notice that the map τ−φ(a) ◦φ ◦ τ−a is just as in proposition 5.5.

6 Self-Similarity in the Julia set
Theorem 6.1. Let f be a rational map with repelling periodic point x of period p and
multiplier λ. Let A 3 x be a completely invariant closed set under f . Then A is asymp-
totically λ-self-similar at x, with limit model derived from the Kœnigs linearisation.

Proof. Let g = fp and x = 0 for simplicity. By Theorem 3.8, there exists a conformal
biholomorphism φ from an open neighbourhood V of the origin to to another one V ′
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such that φ(0) = 0, φ′(0) = 1 and φ ◦ g(z) = λφ(z) in V . We construct the limit set
B in the following way. Since V ′ is open, there is r > 0 such that D̄r b V ′. Define
U = φ−1(Dr/λ) and B = φ(A ∩ Ū).

A ∩ Ū
φ

- B

Ū
?

∩

φ
- D̄r/λ

?

∩

We know from Proposition 5.5 in the previous section that A∩ Ū and B are asymp-
totically similar about 0. We now prove that B is self-similar by showing that (B)r/λ =
(λB)r/λ

B ∩ Dr/λ = φ(A ∩ Ū) ∩ φ(U) = φ(A ∩ Ū ∩ U) = φ(A ∩ U) (18)

and, since φ ◦ g(U) = λφ(U) = Dr, we have U ⊂ g(U), and since A is invariant we
have φ(A) = A. Together these give:

λB ∩ Dr/λ = λφ(A ∩ Ū) ∩ φ(U)

= φ ◦ g(A ∩ Ū) ∩ φ(U)

= φ(A ∩ g(Ū) ∩ U)

= φ(A ∩ g(Ū)) ∩ φ(U)

= φ(A ∩ U) = B ∩ Dr/λ

(19)

Thus proving that B is λ-self-similar about the origin. Thus by Proposition 5.4, A is
asymptotically λ-self-similar about the origin.

Corollary 6.2. Let z0 be a repelling periodic point with multiplier λ of a rational map.
The Julia set is then asymptotically λ-self-similar about z0.

Theorem 6.3. Let f be a rational map with completely invariant closed set A and let x
be an eventually periodic point of period p and multiplier λ such that |λ| 6= 0, 1. Then A
is asymptotically λ-self-similar about x. If additionally, the orbit of x does not contain
any critical point, then the limit model of A at x is the same of that of the cycle, up to
multiplication by a constant.

Proof. Let l ≥ 1 be minimal such that fp ◦ f l(x) = f l(x) and let α = f l(x). By the
previous theorem, the set A is asymptotically λ-self-similar about α with limit model
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B = φ(A ∩ Ū) where φ is the Koenig linearisation such that φ′(α) = 1 and U is a
certain neighbourhood of α in the domain of φ.

Suppose now that the orbit of x does not contain any critical point. Then (f l)′(x) 6=
0 and so f l maps a neighbourhood V of x conformally isomorphically to a neighbour-
hood of α. We may assume U ⊂ f l(V ). Then φ ◦ f l maps A ∩ (f l)−1(Ū) isomor-
phically to B. Then by Proposition 5.5, A is λ-self-similar about x with limit model
(f l)′(x)−1B.

We know that the iterated pre-images of a point z0 in J(f) are dense in J(f). Then,
provided at least one of the backward orbits

z0
f←− [ z1

f←− [ z2
f←− [ z3

f←− [ · · ·

has no critical points in it, the set of points at which Jc has the same limit model (up
to rotation) is dense in Jc. In fact, there is only a finite set of points whose backwards
orbits always hit a critical point. This explains why Jc looks the same everywhere.

7 The Filled Julia set varies continuously at Misiurewicz
parameters

In this section we will prove the following:

Theorem 7.1. Kc varies continuously in the Hausdorff metric around Misiurewicz pa-
rameters.

This is a known result. See
To study the the behaviour of Kc as we vary c ∈ C, we introduce the following sets:

K = {(c, z) ∈ C2 | z ∈ Kc}
J = {(c, z) ∈ C2 | z ∈ Jc}

(20)

Incidentally this gives an alternative definition of the Mandelbrot set as the intersection
of K with the graph of the identity function:

M = {c ∈ C | (c, c) ∈ K} (21)

Theorem 7.2. The set K is closed in C2.

Proof. Consider a convergent sequence {(cn, zn)}n∈N ⊂ K and suppose for sake of
contradiction that the limit (c0, z0) is not in K, so that z0 6∈ Kc0 . It is easy to check
that for all c ∈ C there is a continuously varying escape radius b(c) > 0 such that
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Kc ⊂ D̄b(c). Since the orbit of z0 under iterations of fc0 escapes to infinity, there is
an integer i such that |f ic0(z0)| > b(c0). Since |f ic(z)| and b(c) vary continuously in c
and z, all (cn, zn) sufficiently close to (c0, z0) satisfy |f icn(zn)| > b(cn), which implies
zn 6∈ Kcn , a contradiction.

The fact thatK is closed is a necessary condition for the setsKc to vary continuously
with c. This is encapsulated in the following proposition, stated in a more general form.

Lemma 7.3. Let ∆ ⊂ C be closed and X ⊂ ∆× C such that for all c ∈ ∆:

Xc = {z ∈ C | (c, z) ∈ X} 6= ∅

Then X is closed if and only if for all c0 ∈ ∆, the set Xc0 is closed and, for all r > 0:

lim
c→c0

δ
(

(Xc)r, (Xc0)r
)

= 0

Proof of lemma 7.3. Assume that X is closed. Fix c0 in ∆, and we prove that Xc0 must
be closed. To do so, notice that to any sequence {xn}n∈N in Xc0 converging to a point
x0, there corresponds a sequence {c0, xn} in X that converges to the point {c0, x0},
which must be in X since this is closed. Therefore x0 ∈ Xc0 , proving that Xc0 is closed.
We prove the second statement by contradiction. Choose r > 0 and suppose for the
sake of contradiction that there exists a sequence {cn} in ∆ that converges to c0 and
ε > 0 such that δ

(
(Xcn)r, (Xc0)r

)
> ε. This implies that for each n, there is xn in

Xcn ∩ D̄r such that d
(
xn, (Xc0)r

)
> ε. Now, since the sequence {cn, xn}, at least for

n large enough, lives in a compact subset of X , there is a subsequence {cnk , xnk} that
converges to a point (c0, x0) in X . By definition x is in (Xc0)r. So {xnk} converges to
a point in (Xc0)r while d

(
xnk , (Xc0)r

)
> ε, which is a contradiction. These arguments

can be repeated for any c0 ∈ ∆ and r > 0.
For the other direction, consider a sequence {cn, xn}n∈N in X that converges to a

point (c0, x0) in ∆ × C. To prove that X is closed it is sufficient to show that x0 is in
Xc0 . Let d0 = d(x0, Xc0) and r large enough so that Xc0 ∩ Dr 6= ∅, x0 is in Dr and
r > d0 so that d(x0, (Xc0)r) = d0. Since {xn} converges to x0, there is N such that
for all n sufficiently large, xn is so close to x0 that d(xn, (Xc0)r) = d(xn, Xc0). We can
then define a sequence {xn⊥} in Xc0 such that

xn⊥ ∈ arg min
x∈Xc0

|xn − x|

but then
min
x∈Xc0

|xn − x| = d
(
xn, Xc0

)
= d(xn, (Xc0)r)

≤ δ
(
Xcn , (Xc0)r

)
−→
n→∞

0

(22)
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So then |xn−xn⊥| → 0 and therefore lim
n→∞

xn⊥ = lim
n→∞

xn = x0. Since Xc0 is closed
by assumption and x0 is the limit of a sequence in Xc0 , x0 is in Xc0 .

Corollary 7.4. For all c ∈ C, and all r > 0, lim
c′→c

δ
(
(Kc′)r, (Kc)r

)
= 0.

We have learned something about the variation of the filled Julia set. The above
corollary indicates that, even if there are discontinuities, they are of a kind, which can
be called “implosive”. To make it explicit we consider simple example. Let

X = (D̄2 × D̄) ∪ (D̄× D̄2)

so that

Xc =


D̄2 for c ∈ D̄
D̄ for c ∈ D̄2\D̄
∅ for c 6∈ D̄2

As c varies from 0 to 3 on the real line, Xc suffers two “implosions”, first from D̄2 to
D̄ and then to ∅. These are hardly continuous changes. However since X is closed by
virtue of being the union of two closed sets, by Lemma 7.3 we must have δ(D̄, D̄2) = 0
and this indeed the case. As discussed in Section 5, the only requirement for Kc′ as c′

approaches c is that it must be a subset of Nε(Kc) for smaller and smaller values of ε.
This allows for events called parabolic implosions (Figure 4 ) see [21].

Figure 4: An example of parabolic implosion: Representations of Kc as c varies from
0.252 + 0.0002i to 0.258 + 0.0008i in equal steps.

To have continuity in the Hausdorff distance, there needs to be more constraints. For
this we introduce the concept of a continuous section, which will provide some more
control on the variation of Kc.

Definition 13. Given a setX ⊂ C×C. A continuous local section ofX at (c0, z0) ∈ X
is a continuous map hz0 from a neighbourhood U 3 c0 to C such that hz0(c0) = z0 and
for all c ∈ U , hz0(c) ∈ Xc.
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Proposition 7.5. Let ∆ ⊂ C be closed and X ⊂ ∆× C such that for all c ∈ ∆:

Xc = {z ∈ C | (c, z) ∈ X} 6= ∅

Suppose additionally that for some c0 in ∆, there a is set A, dense in Xc0 such that,
for all a in A, there is a continuous local section ha of X at (c0, a). Then Xc varies
continuously around c0 in the sense that: lim

c→c0
dr
(
Xc, Xc0

)
= 0 for all r > 0.

Proof. For simplicity, assume that X is translated so that c0 = 0. Choose r > 0. By
Lemma 7.3 we know lim

c→0
δ
(

(Xc)r, (X0)r
)

= 0. We need to prove lim
c→0

δ
(

(X0)r, (Xc)r
)

=

0.
Set ε > 0; the set of disks of radius ε/2 centred at the elements of A provide a cover

of X0, and hence of X0∩ D̄r. The latter being compact, there exists a finite set of points
a1, a2, · · · , am ∈ A such that

X0 ∩ D̄r ⊂
m⋃
i=1

Dε/2(ai)

By hypothesis, there is a continuous local section at each of the ai. By the continuity,
for each i = 1, 2, · · · ,m there is ηi > 0 such that |hai(c)−ai| < ε/2 as soon as |c| < ηi.
Set η = min ηi. Now pick any c ∈ Dη. For every point x0 ∈ X0 ∩ D̄r we have
d (x0, (Xc)r) ≤ d (x0, Xc) and

d (x0, Xc) = min
x∈Xc
|x− y|

≤ min
i
|x− hai(c)|

≤ min
i
|x− ai|+ |hai(c)− ai|

≤ ε/2 + ε/2 = ε

and thus δ
(

(X0)r, (Xc)r
)

= δ
(
X0 ∩ D̄r, (Xc)r

)
< ε.

Proof of Theorem 7.1. We know that the set of repelling periodic orbits is dense in Jc,
and the implicit function theorem makes it possible to create continuous local sections
through each of these. We have also proven that when c0 is Misiurewicz, Jc0 = Kc0 .
Thus Proposition 7.5 applies and

lim
c→c0

dr(Kc, Kc0)

Note that this proof relies crucially on the fact that c0 is Misiurewicz. Generally
however, fc might allow for parabolic points, which for small variations of cwill vanish.
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Figure 5: Continuous variation of Kc: Representations of Kc for c approaching the
Misiurewicz parameter c0 = −i from the left.

8 Self-Similarity in the Mandelbrot set
The following section will prove the main result in Tan Lei’s paper [3] concerning the
self-similairty of the Mandelbrot set at the Misiurewicz parameters. Tan Lei goes about
the proof in two steps. In Section 4 of the paper, she proves a general result for con-
tinuous mappings from C → Ck, and then in Section 5 she verifies that the a map
u : C → C, to be introduced below, connecting the dynamical plane to the parameter
plane satisfies the conditions for the proposition of Section 4. In work, we prove the re-
sult directly for the Mandelbrot set, without deriving the general case. Taking this direct
path perhaps makes the logic easier to follow. Some details of the proof are expanded
upon.

8.1 Setup
Let c0 ∈ C be a Misiurewicz parameter with l, p minimal such that

fpc0 ◦ f
l
c0

(c0) = f lc0(c0)

We recall from Section 4.1 then that α0 ≡ f lc0(c0) is a repelling periodic point with
multiplier ρ0 ≡ (fpc0)

′(α0) and that (f lc0)
′(c0) 6= 0. Kc0 coincides with Jc0 and is asymp-

totically ρ0-self-similar about both α0 and c0 from Section 6.2.
We can apply the implicit function theorem to obtain a holomorphic function α(c)

defined in a neighbourhood ∆ of c0 such that α(c0) = α0, and fpc (α(c)) = α(c). The
neighbourhood can be taken small enough so that α(c) is a repelling p-periodic point
under fc for all c ∈ ∆. Write ρ(c) = (fpc )′(α(c)) for the multiplier of these orbits.

Then for all parameters c ∈ ∆, Kc will be asymptotically ρ(c)-self-similar about
both α(c) Let Xc be the scaling limit of Kc at α(c), and recall by Theorem 6.1 that Xc

is obtained by using the Koenig linearisation φα(c).
The key to connecting the dynamical and parameter planes is the function

u(c) = φα(c) ◦ f lc(c) (23)
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as will become evident later. The fact that this is a holomorphic function is non-trivial,
as φα(c) Kœnigs linearisations for different maps. Tan Lei states without proof (c, z) 7→
φα(c)(z) depends holomorphically in c in a neighbourhood of (c0, α0) (Lemma 5.2 of
the paper). Here we provide proof for the following two statements that will be used to
prove the asymptotic self-similarity of the Mandelbrot set at c0.

Proposition 8.1. The map φ : (c, z) 7→
(
c, φα(c)(z)

)
, where φα(c) denotes the Koenig

linearisation of fc at α(c), is holomorphic in a neighbourhood of (c0, α0).

Corollary 8.2. The map Φ : (c, z) 7→
(
c, φα(c) ◦ f lc(z)

)
is holomorphic in a neighbour-

hood U of (c0, c0).
Corollary 8.2 in turn implies that u is holomorphic in a neighbourhood of c0.

Lemma 8.3. Let f : Dr(a) → C be holomorphic. If f ′(a) 6= 0 for all z ∈ Dr(a) we
have |f ′(z)− f ′(a)| < |f ′(a)| then f is invertible.

Proof. We may assume without loss of generality that r = 1 and a = 0. Notice that the
inequality implies f ′(z) 6= 0. Fix ω ∈ C, and consider the function

g(z) = z +
ω − f(z)

f ′(0)

And notice that

|g′(z)| =
∣∣∣∣∣1− f ′(z)

f ′(0)

∣∣∣∣∣ =

∣∣∣∣∣f ′(0)− f ′(z)

f ′(0)

∣∣∣∣∣ < 1

Additionally, notice that g(z) = z ⇐⇒ f(z) = ω. Thus, any solution for f(z) = ω
for z ∈ D will be an attracting point of the dynamics of g. Let x be such a solution; we
prove there cannot be another one. Then we can use the conformal isomorphism of the
disk:

φx : z 7−→ z − x
1− x̄z

to conjugate the dynamics of g into those of g̃ = φx ◦ g ◦ φ−1
x . Now the origin is an

attractive fixed point of g̃. Take any z ∈ D, then we integrate along the straight line
connecting it with the origin to learn that the map is strictly contracting,

|g(z)| =
∣∣∣∣∫ z

0
g′(u)du

∣∣∣∣ ≤ ∫ z

0
|f ′(z)| |dz| <

∫ z

0
|dz| = |z|

so that no other point can fixed.

Lemma 8.4. Let g : C2 → R be a continuous function and let α be a holomorphic
function in one complex variable. Suppose g(z, α(c0)) < 0 holds for all z in a neigh-
bourhood of c0 for some c0. Then there exists a disk ∆ centred at c0 and a diskD centred
at α(c0) such that α(∆) b D and g(z, α(c)) < 0 for all z ∈ D and c ∈ ∆.
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Proof. Assume without loss of generality that α(c0) = 0. There is r > 0 such that
for all z ∈ D5r, g(z, 0) < 0. Since α is holomorphic, there is δ1 > 0 such that, for
∆ = Dδ1(c0), α(∆) b Dr, so that for all c ∈ ∆, we have

α
(
∆
)
b Dr b D2r(α(c)) b D4r

We define the set
V =

⋂
c∈∆

D2r

(
α(c)

)
this set is non-empty, as it contains α(∆) and is compactly contained in D5r. We show
that we can select a neighbourhood of c0 so that g(z, α(c)) < 0 for all z ∈ V .

For each z ∈ V , thanks to the continuity of g and the analyticity of α, there is
δ(z) > 0 such that g(z, α(c)) < 0 for all c ∈ Dδ(z)(c0). Since V is compact, δ(z)
achieves a minimum δ2 > 0. Set ∆′ = Dmin{δ1,δ2}(c0). It is easy to check Dr ⊂ V .We
then have the following properties:

α(∆′) ∈ Dr and g(z, α(c)) < 0

for all z ∈ Dr and c ∈ ∆′.

Proof of Proposition 8.1. We first prove that we can restrict ∆ so that there is neigh-
bourhood of V of α0 such that α(∆) ⊂ V and fpc |V has a well defined inverse. For all z
in a certain neighbourhood of α0,

|(fp)′c0(z)− (fp)′c0(α0)| < |(fp)′c0(α0)|

We can then apply Lemmas 8.4 and 8.3 to obtain two disks ∆ and D centred at c0 and
α0 respectively, by fpc |D is invertible for all c ∈ ∆.

Denote by gc the inverse of fpc |D and ρ(c) = (gc)
′(α(c)) = λ(c)−1. Consider the

functions

φc,n : z 7−→ gnc (z)− α(c)

ρ(c)n
(24)

For each n and each c, they obey: φc,n ◦ gc(z) = ρ(c)φc,n+1(z) so that, wherever they
converge, they converge to the Koenig linearisation φα(c) of gc at α(c). We prove that
there is a neighbourhood of (c0, α0) where they converge uniformly.

Let ρ1 = infc∈∆ |ρ(c)| and ρ2 = supc∈∆ |ρ(c)|. Since |ρ0|2 < |ρ0| we can assume
that ∆ is small enough so that ρ2

2 < ρ1 and so we can choose a > 0 so that 0 < a2 <
ρ1 < ρ2 < a < 1. We can then take r′1 > 0 so that for all z ∈ Dr′1

(α0) we have
|gc0(z)− α0| < a|z − α0|. By applying Lemma 8.4 again, we can find δ1, r1 > 0, such
that, for all c ∈ Dδ1(c0) and z ∈ Dr1(α0)

|gc(z)− α(c)| < a|z − α(c)|
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and by induction,
|gnc (z)− α(c)| < an|z − α(c)|

Additionally, there is r′2 > 0 and A > 0 such that for all z ∈ Dr′2
(α0)

|gc0(z)− α−ρ0(z − α0)| < A|z − α0|2

Applying Lemma 8.4 once more, we obtain δ2, r2 > 0, such that, for all c ∈ Dδ2(c0) and
z ∈ Dr2(α0)

|gc(z)− α(c)− ρ(c)(z − α(c))| < A|z − α(c)|2

We now set δ = min{δ1, δ2} and r = min{r1, r2} so that, for all c ∈ Dδ(c0) and
z ∈ Dr(α0) the two properties above hold, and we can deduce that

|gn+1
c (z)− α(c)− ρ(c)(gnc (z)− α(c))| < A|gnc (z)− α(c)|2 < Aa2nr′

Finally, we have

|φc,n+1(z)− φc,n(z)| =
∣∣∣∣∣gn+1
c (z)− α(c)

ρ(c)n+1
− gnc (z)− α(c)

ρ(c)n

∣∣∣∣∣
= ρ(c)−(n+1)||gn+1

c (z)− α(c)− ρ(c)(gnc (z)− α(c))|

< ρ
−(n+1)
1 Aa2nr′ =

Ar′

ρ1

(
a2

ρ1

)n
−→ 0
n→∞

since ρ1 > a2

(25)

So that each sequence φc,n converges to a holomorphic function φc as n → ∞ , uni-
formly in c, which means that φc(z) meaning that holomorphically on c.

Proof of Corollary 8.2. This follows immediately from the Lemma 8.4 and the fact that
(c, z) 7→ (c, f lc(z)) is holomorphic.

Another key property, known as transversality is that u′(c0) 6= 0. This is a non trivial
result with a number of proofs, see below.

By the previous lemmas, we can assume that there is δ > 0 and V 3 c0 such that,
letting ∆ = D̄δ(c0) for all c ∈ ∆, the function φα(c) ◦ f lc|V has a holomorphic inverse.
We may assume that ∆ b V . Restrict ∆ further if necessary so that we can also choose
r > 0 such that for all c ∈ ∆:

Φ(c, c) =
(
c, u(c)

)
∈ ∆× D̄r ⊂ Φ(∆× V )

Define
Ω = Φ−1(∆× D̄r) (26)

which is closed because it is the preimage of a closed set. By Lemma 7.3, the sets

Ωc = {z ∈ C | (c, z) ∈ Ω} (27)
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are also closed. By definition c ∈ Ωc. Essentially ω is the set where the Kœnigs
linearisations

We also collect the models

Xc = φc ◦ f lc(Kc ∩ Ωc) (28)

into the set
X = Φ(K ∩ Ω) = {(c, x) ∈ Ω | x ∈ Xc} (29)

Since K and Ω are closed sets and Φ is analytical, X is also a closed set. Notice that
the local continuous sections of K at repelling periodic points of Kc0 are mapped by Φ
to local continuous sections ofX on a dense subset ofXc0 . We then have by Proposition
7.5:

lim
c→c0

Xc = Xc0 (30)

Notice that, for all c ∈ ∆, u(c) is in Xc if and only if c is in Kc, which itself is
equivalent to saying that c is in the Mandelbrot set M . So we can write:

M ∩∆ = {c ∈ ∆ | u(c) ∈ Xc} = u(∆) ∩X (31)

And we can finally state and prove the main theorem.

Theorem 8.5 (Tan Lei). The Mandelbrot set is asymptotically ρ0-self-similar about c0.
In particular, there exists a radius s > 0 such that if we writeMn = ρn0u

′(c0)τ−c0(M∩∆)
for all n ∈ N, then

lim
n→∞

ds(Mn, Xc0) = 0 (32)

Proof. We list a number of properties that are possible for all c ∈ ∆ because ∆ is
compact:

• There is a radius s > 0 such that
(
ρ(c)Xc

)
s

= (Xc)s for all c ∈ ∆.

• There are constants C1, C2, C3 > 0 such that:

|ρ(c)− ρ(c0)| ≤ C1|c− c0|
|u(c)| ≤ C2|c− c0|

|u(c)− u′(c0)(c− c0)| ≤ C3|c− c0|2
(33)

• Since |ρ0||ρ0|−2 < 1, we can assume ∆ is small enough so that µ1µ
2
2 < 1, where

µ1 = max
c∈∆
|ρ(c)|

µ2 = max
c∈∆
|ρ(c)|−1

(34)
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Define for all n ∈ N:
Mn = ρn0u

′(c0)τ−c0M∆ (35)

Step 1. We first prove that δ
(

(Mn)s, (Xc0)s
)
−→ 0 as n→∞.

A point y is in Mn ∩ D̄s if and only if there is a parameter c ∈ M ∩ ∆ such that
y = ρn0u

′(c0)(c− c0). This parameter then satisfies

|c− c0| = |ρn0u′(c0)|−1 |y| ≤
∣∣∣∣∣ s

u′(c0)

∣∣∣∣∣ |ρ0|−n ≤ C|ρ0|−n ≤ Cµn2

To estimate the distance from a point y in Mn ∩ D̄s to (Xc0)s we use the triangle in-
equality

d
(
y, (Xc0)s

)
≤ |y − ρ(c)nu(c)|+ d

(
ρ(c)nu(c), (Xc0)s

)
(36)

Let’s look at each summand of (36) in turn. We split the first one in two terms, again
using the triangle inequality:

|y − ρ(c)nu(c)| = |ρn0u′(c0)(c− c0)− ρn0u(c)|+ |ρn0u(c)− ρ(c)nu(c)|

≤ |ρ0|n|u′(c0)(c− c0)− u(c)|+ |ρn0 − ρ(c)n||u(c)|
(37)

For the first term, we can directly apply one of the continuity relation above and the
bound on |c− c0|:

|ρ0|n|u′(c0)(c− c0)− u(c)| ≤ |ρ0|nC3|c− c0|2 ≤ CC3|ρ0|−n −→
n→∞

0

For the second term, we make use of a telescoping sum, and then apply two of the
continuity relations and the bound on |c− c0|:

|ρn0 − ρ(c)n| =
∣∣∣∣∣
n−1∑
i=0

ρn−i0 ρ(c)i − ρn−1−i
0 ρ(c)i+1

∣∣∣∣∣
=

∣∣∣∣∣(ρ(c)− ρ0)
n−1∑
i=0

ρn−1−i
0 ρ(c)i

∣∣∣∣∣
≤ |ρ(c)− ρ0|

n−1∑
i=0

|ρ0|n−1−i|ρ(c)|i ≤ |ρ(c)− ρ0|nµn−1
1

|ρn0 − ρ(c)n| ≤ C1|c− c0| nµn−1
1

⇒ |ρn0 − ρ(c)n| |u(c)| ≤ C1nµ
n−1
1 |c− c0|C2|c− c0| = C1C2|c− c0|2nµn−1

1

≤ C1C2C
2µ2n

2 nµn−1
1

≤ C1C2C
2 n(µ1µ

2
2)n −→

n→∞
0
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Thus the second term also tends to 0, uniformly in y.
Fix ε > 0. We have just proven that there is N1 such that for all n > N1, we have

|y − ρ(c)nu(c)| < ε/2

and, as y ∈ D̄r, we have
|ρ(c)nu(c)| < s+ ε/2

Since u(c) is in Xc, which is ρ(c)-self similar in the window of radius s, ρ(c)nu(c)
is in (Xc)s, provided that |ρ(c)nu(c)| ≤ s. Additionally, since (Xc)s contains the circle
of radius s, we conclude that, in any case:

d
(
ρ(c)nu(c), (Xc)s

)
< ε/2

Moreover,

d
(
ρ(c)nu(c), (Xc0)s

)
≤ d

(
ρ(c)nu(c), (Xc)s) + ds(Xc, Xc0

)
and since ds(Xc, Xc0

)
→ 0 as c → c0, and c → c0 as n → ∞, we can choose N2 so

that for all n > N2 we have ds(Xc, Xc0

)
< ε/2, so that

d
(
ρ(c)nu(c), (Xc0)s

)
< ε

This completes the proof that δ
(
Mn, (Xc0)s

)
tends to 0 with n.

Step 2. We now prove that δ
(

(Xc0)s, (Mn)s
)
−→ 0 when n→∞.

Let A ∈ Xc0 denote the dense subset of the images under the map z 7→ φα(c) ◦ f lc(z)
of the repelling periodic (under fc) points in the neighbourhood in Kc ∩ Ωc. We can
show that for each a ∈ A ∩ D̄s d(a, (Mn)s)→ 0. Fix a in A, then there is a continuous
section ha : Dd(c0)→ X such that

ha(c0) = a and ha(c) ∈ Xc ∩ D̄s

Since u(c0) = 0 and u′(c) 6= 0, and ha
(
Dd(c0)

)
is in the disk Ds, Lemma 8.6 below

guarantees that the equation

u(c)− ρ(c)−nha(c) = 0 (38)

has a solution in Dd, at least for n large enough. We can then build a sequence {cn}
such that

ρ(cn)nu(cn) = ha(cn) (39)

so that ρ(cn)nu(cn) must be in Xcn ∩ D̄s.
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Since this set is ρ(cn)-self-similar, u(cn) is also in (Xcn)s for n and hence cn is in
M ∩∆ and ρn0u

′(c0)(cn − c0) ∈Mn. Then

d
(
a, (Mn)s

)
≤ d(a,Mn) ≤ |a− ρn0u′(c0)(cn − c0)|

≤ |a− ha(cn)|+ |ρ(cn)nu(cn)− ρn0u′(c0)(cn − c0)|
(40)

We prove that cn converges to c0 geometrically. Indeed, one of the continuity con-
ditions gives

|u′(c0)(cn − c0)| ≤ |u(cn)|+ C3|cn − c0|2

so that if d is chosen small enough that dC3 ≤ |u′(c0)|. This can always be done, and
independently of a. Then, since |cn − c0| < d, we have

u′(c0)(cn − c0)| ≤ |u(cn)|+ C3d|cn − c0|

⇒ |cn − c0| ≤
1

|u′(c0)| − C3d
|u(cn)| = C ′|u(cn)|

(41)

Now, since ρ(cn)nu(cn) is in Xcn ∩ D̄s, we have |u(cn)| ≤ |ρ(cn)|−ns ≤ µn2s and thus

|cn − c0| ≤ C ′µn2s →n→∞ 0 (42)

This last equation lets us prove the convergence of (40). Indeed, the first summand tends
to 0 because of the continuity of ha. The second summand is bounded by

|ρ(cn)n − ρ(c0)n||u(cn)|+ |ρn0 ||u(cn)− u′(c0)(cn − c0)|

which can be treated just like (37) in Step 1.
Now we can prove that δ

(
(Xc0)s, (Mn)s

)
goes to 0. Given ε > 0 we can pick a

finite set a1, a2, · · · , am ∈ A so that

Xc0 ∩ D̄s ⊂
m⋃
i=1

Dε/2(ai)

for each of the ai there is di ≤ |u′(c0)|/C3 and we can choose d = mini di. Then for all
c ∈ Dd, and all ai,

d
(
ai, (Mn)s

)
→
n→∞

0

uniformly, so that there is N such that for all n > N and all i, d
(
ai, (Mn)s

)
≤ ε/2.

Then for any x0 ∈ Xc0 ∩ D̄s:

d
(
x0, (Mn)s

)
≤ min

i
|x− ai|+ d

(
ai, (Mn)s

)
≤ ε/2 + ε/2 = ε

(43)
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A remark on the proof. A loose description of the proof can be as follows. The
function z 7→ φα(c) ◦ f lc(z) is a function takes a neighbourhood of the dynamical plane
to the Kœnigs coordinates for the parameter c. Then c 7→ u(c) = φα(c) ◦ f lc(c) can
be thought as taking each point c of the parameter space, injecting it in the dynamical
plane for fc and then sending that to the associated Kœnigs plane. The c ∈ M are
exactly those that land on the the associated Xc. We take these and project them from
their dynamical plane to that of c0. The fact thatXc → Xc0 ensures us that the projection
u(c) is not never too far from Xc0 . Transitivity ensures that the ”projection” u(M) is
spread out in the dynamical plane of c0.

Lemma 8.6. Let u : V → C be an holomorphic function that fixes the origin, such
that u′(0) 6= 0, then there is a constant η > 0 such that, for all holomorphic functions
v : D→ Dη, the equation u(z) + v(z) = 0 always has a solution.

Proof. There is a disk Dε that is mapped univalently by u, and since 0 will be in the
image, there is η > 0 such that D4η b u(Dε). Then γ = u−1(∂D3η) is a simple closed
curve. Now consider any holomorphic v : D → Dη. The image of γ under u + tv, for
any t ∈ [0, 1] must be a closed curve in the annulus D4η\D̄η. As a consequence, the
component of V \γ that contains 0 gets mapped by u + v to a set that contains Dη as a
subset, and hence 0.

The proof crucially relies on this lemma:

Lemma 8.7 (Transversality). u′(c0) 6= 0

Proof. We define two functions:

β : ∆ −→ C
c 7−→ f lc(c)

w : ∆ −→ C

c 7−→ fpc
(
β(c)

)
− β(c)

(44)

The first tracks the point where c lands in a neighbourhood of the periodic α(c) after l
iterations and the second can be seen as a measure of how far off f lc(c) is from being
periodic. Indeed β(c0) = α0 and w(c0) = 0. We will first prove

u′(c0) = β′(c0)− α′(c0) = (ρ0 − 1)−1w′(c0)

To do this, introduce the function F (c, z) = φα(c)(z). Then u(c) = φα(c) ◦ f lc(c) =

F
(
c, β(c)

)
and thus

u′(c0) = ∂cF (c0, α0) + β′(c0)∂zF (c0, α0)
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We have
∂zF (c0, α0) = (φα0)

′(α0) = 1

by definition. Then notice that F (c, α(c)) = 0 identically, so that

F (c, α0)− F (c0, α0)

c− c0

=
F (c, α0)− F (c, α(c))

c− c0

= −F (c, α0)− F (c, α(c))

α(c)− α0

α(c)− α0

c− c0

⇒ ∂cF (c0, α0) = lim
c→c0

F (c, α0)− F (c0, α0)

c− c0

= −∂zF (c0, α0)α′(c0) = −α′(c0)

so that indeed u′(c0) = β′(c0)− α′(c0).
Now, since fpc ◦ α(c) = α(c) and w(c0) = 0,

w(c)− w(c0)

c− c0

=
w(c)

c− c0

=
fpc ◦ β(c)− fpc ◦ α(c)

c− c0

+
α(c)− β(c)

c− c0

=

(
fpc ◦ β(c)− fpc ◦ α(c)

β(c)− α(c)
− 1

)
β(c)− α(c)

c− c0

⇒ w′(c0) =
(
(fpc0)

′(c0)− 1
)

(β′(c0)− α′(c0)) = (ρ0 − 1) (β′(c0)− α′(c0))

The fact that w′(c0) 6= 0 is not self evident. There is a proof of this in [10] that uses ring
theory.

This was also proven in a more general case in [12]. Yet another proof can be found
in Appendix 2 of [13].

8.2 More recent results
Rivera-Letelier’s paper [13] is a generalisation of Tan Lei’s theorem for all parameters
c0 where the orbit 0 zero is non-returning, meaning that there is a neighbourhood U of
0 such that fnc0(0) 6∈ U for all n ≥ 1. It also includes a bound on the variation of Kc0

around these parameters, i.e. that there exists a C > 0 such that

dH(Kc, Kc0) < C|c− c0|1/2
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