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Abstract

Quantum gravity is generally seen as a high energy physics field. However, recent
progress in quantum control of matter means we might be able to perform tests
of quantum gravity predictions using slow-moving masses. Interest in these kinds
of proposals has renewed a conversation between the quantum gravity, quantum
information, and quantum foundations communities. This thesis presents original
work on topics at the intersection of these three fields.

Part of the thesis is concerned with studies of low energy tests of quantum
gravity, and beyond. One such test aims at detecting entanglement between masses
in a superposition as a result of gravitational interaction. We detail a quantum
optics simulation of this effect and report on the results. We then derive from
first principles the quantum phases involved in this quantum gravity experiment.
We obtain an exact formula that improves on the current literature, as it takes
into account relativistic retardation and can be computed for general trajectories
and arbitrary number of particles. We also propose an experiment to test the
discreteness of time. This test involves a single mass in a superposition of paths in a
weak gravitational field. We assess its experimental feasibility and find it in a similar
range as the low energy quantum gravity experiments proposed in the literature.

The rest of the thesis focuses on more conceptual aspects of space and time. We
study the origin of the time-orientation of the operational formulations of quantum
mechanics, which is in tension with the time-reversal symmetry of the rest of
fundamental physics. We argue that the formalism is time-oriented, not because the
fundamental physics is time-oriented, but because it is designed to study situations
created by time-oriented macroscopic systems. Finally, we explore the consequences
of admitting relative facts in the ontology of quantum mechanics, as proposed by
the relational interpretation of quantum mechanics, and as hinted by a recent no-go
theorem. We argue in particular that this clarifies the measurement problem and
Wigner’s friend-type scenarios, and allows to explain the emergence of the shared
macroscopic world in which humans operate.
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1

Introduction

Current fundamental physics research concentrates on radically unfamiliar scales.
Particle colliders explore regimes of the tiny and fast, while cosmology studies
the unfathomably large and distant. When experiment and data collection are
possible, the machinery involved is so sophisticated that it requires international
collaborations of scientists and engineers numbering in the hundreds. Research in
what is arguably the biggest open problem in fundamental physics—the search for
a quantum theory of gravity—has been almost exclusively a theoretical effort for
about 90 years. Doing experiments in quantum gravity is, to put it mildly, hard.
The fundamental constants c, ~ and G offer us a dimensional estimate of the scales
involved in a bona fide quantum gravitational phenomenon.

lP =

√
G~
c3 ≈ 10−35 m, tP =

√
G~
c5 ≈ 10−44 s, EP =

√
~c5

G
≈ 1016 TeV.

These quantities define the planck scale, and current technological capabilities are
far from probing these scales directly. This can occasionally create a sense of
disillusionment in the enterprise of quantum gravity. To this day, there is no genuine
experimental evidence for quantum gravity, even though there are several candidate
theories.

There is one field of fundamental physics that is an outlier in this respect,
where theory and experiment go hand in hand and advances, both theoretical
and experimental, are still being done by small groups. This is the field that
studies the mathematical structure of quantum theory itself. This field consists
of two intermingling and cross-pollinating communities: the quantum information
and quantum foundations communities. One studies the information processing
capabilities afforded by quantum physics and the other explores the mathematical
and physical foundations of quantum mechanics. Historically, the rising interest in
quantum foundations was heralded by the derivation of Bell’s first theorem in the
1960s. Researchers started to ask in what ways the puzzling properties of quantum
systems can be used illuminate reality, and to seek ways to employ these features for
technology. In the last decades, the field of quantum information has been growing
rapidly, with private companies and public institutions competing to build larger
programmable quantum computers, with the promise of actual quantum advantage
over classical computers. Experimentalists are constantly striving to achieve larger
and longer lasting superpositions and developing new ways to spread entanglement
to more systems and controlling them without losing coherence.

The increase of quantum control over larger systems has already benefited the
other branches of physics. Today, it has enabled high precision tests of general
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relativity, such as the detection of gravitational waves, the measuring of gravitational
time-dilation, and the quantification of gravitational acceleration due to minuscule
masses. Soon, it might open a window into quantum gravity. Let us come back to
the planck scale. One of the dimensions stands out: the planck mass

mP =

√
~c2

G
≈ 20 µg

is just slightly lighter than a human hair. It is about the mass of 1017 silicon atoms.
While we are still orders of magnitude away from achieving quantum superpositions
of systems of this mass, the gap narrows. In the last few years, researchers have been
proposing experimental setups featuring slow-moving quantum systems, designed
to verify the non-classical nature of the gravitational field. Two masses, each
in a superposition of position, become entangled by interacting with each other
gravitationally. The effects are more pronounced the closer the mass of the involved
quantum system is to the planck mass. Thus, the quantum gravity scale is being
approached by the methods of fundamental research in quantum theory, not by
smashing high-energy beams with each other, but by delicately isolating systems
and allowing them to evolve, undisturbed, in superposition.

The work reported in this thesis concerns topics broadly in the intersection of
the fields of quantum gravity, quantum information (QI) and quantum foundations
(QF). Part I, introduces, in turn, each of these three fields. Chapter 1 discusses
quantum gravity. In particular, we look at quantum gravity as a perturbative field
theory, an effective theory which is predictive until very high energy scales. We also
discuss the proposals to test quantum gravity in the low energy regime, focussing on
the experiment aimed at detecting a specific prediction of quantum gravity, namely
gravitationally mediated entanglement (GME). This has the potential of being the
first experimental test of a genuine quantum gravity effect. Something else makes
these tests interesting: there is a theorem from quantum information theory that
a classical system cannot mediate the creation of entanglement. In chapter 2, we
talk about quantum information theory. We introduce the operational formulation
of quantum mechanics used in QI/QF research, and talk about some key concepts
relevant to these experiments. After introducing the framework of generalised
probabilistic theories, we reproduce a proof of the theorem mentioned above that
makes GME so interesting. In chapter 3, we talk about quantum foundations.
We see how the generalised probabilistic theories have been used to derive the
Hilbert space structure of quantum mechanics starting from physical axioms about
information processing. We then discuss the measurement problem and some of the
interpretations of quantum mechanics that feature in the rest of the thesis. We also
present results from the field of experimental metaphysics. These are no-go theorems
that constraints our ultimate pictures of reality. Bell’s theorems put strains on our
notions of causality, while a recent theorem by Bong et.al. puts under stress our
notion of objective reality. These three chapters do not attempt to cover exhaustively
these fields, but are meant to provide motivation and context for the rest of the
thesis, parts II to IV, which feature original research.

The start of the journey is the closest to experiment. In part II, we study the
GME experiment in detail. In fact, in chapter 4, we propose a simulation of the
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experiment, which is being implemented on a photonic platform in Sapienza. The
simulation embeds the evolution of the systems involved in the GME experiment
in logical quantum circuits, and the circuits are then implemented using photonic
degrees of freedom. Unfortunately, the experimental part of this project has been
critically slowed down by the pandemic. nevertheless, we are able to report some
amount of experimental data. Chapter 5 is more theoretical: we derive from first
principles the exact formula for the quantum phases developed by the masses in the
GME experiment. Extant derivations of the effect make use of a static approximation,
which obscures the dynamical role played by the geometry in the experiment. We
use linearised quantum gravity to derive the formulas to compute the phases for
arbitrary trajectories. The phases show retardation effects due to the finite speed of
propagation of perturbations in the geometry.

In part III, we talk about time. Chapter 6 proposes an experiment, while
chapter 7 is a theoretical discussion. In chapter 6, inspired by the GME setup, we
detail an experiment that could allow to detect a hypothetical discreteness of time
of the order of a planck time. This is based on the realisation that quantum phases
due to gravity can be understood in terms of differences in proper time. Weak
gravitational field gradients correspond to small differences in proper time, which
can reach planckian size. We derive experimental requirements to detect such a
hypothetical discreteness of time and find, perhaps surprisingly, that these are not
too far removed from current technological trends. While there is no unambiguous
prediction of time-discreteness in the major approaches to quantum gravity, this is a
previously untested regime of gravity and, as such, worth exploring. In chapter 7,
we discuss a main point of tension between the gravity and the QI/QF communities:
the status of time-reversal symmetry. Fundamental theories of mechanics are time-
reversal symmetric, while the operational formulation of quantum theory is starkly
time-oriented. This might be a problem when trying to extend this formulation
to the search of a quantum theory of gravity. We argue that the origin of this
time-asymmetry is to be found in the main domain of application of the operational
formulation: laboratory physics, where time-oriented decision-making agents are
manipulating the systems.

The end of the journey, part IV, is the most philosophical. Classical physics, is
based on the existence of an objective reality, were facts happen and are absolute.
Quantum mechanics complicates things, allowing objects to have indefinite properties.
Nevertheless, most interpretations of quantum mechanics still assume the existence
of a shared, objective reality. But the theorem by Bong et.al. mentioned above forces
us to re-examine the notion of objective reality. We discuss aspects of the relational
interpretation of quantum mechanics, which proposes to solve the measurement
problem by introducing the notion or relative facts. According to the relational
interpretation, facts happen at every interaction between any two systems, but that
these facts are relative only to the systems involved in the interaction. In chapter 8,
we discuss this idea in detail and see how to connect it with the observed world. In
particular, we show how decoherence allows a large class of relative facts to become
stable, meaning that their relative nature can be ignored. In chapter 9, we further
explore the consequences of the relativity of facts, especially as it pertains to the
analogy with special relativity and to the degree that objectivity can be achieved in
the world of relative facts.
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Part I

Some background



5

Chapter 1

Quantum Gravity

Why paradox? Because Einstein’s
equation says “this is the end” and
physics says “there is no end.”

Misner, Thorne and Wheeler [176]

1.1 Why we need it
General relativity (GR) unifies gravitational and inertial phenomena, explaining
them as features of how matter interacts with the geometry of spacetime. Its
dynamical content is expressed1 by the Einstein Field Equations (EFE),

Rµν −
1
2gµνR = 8πGTµν . (1.1)

relating the metric field gµν , which encodes the geometrical properties of spacetime,
with the energy-momentum tensor field Tµν of matter

The Einstein field equations not only managed to resolve a known tension between
Newton’s law of gravitation and the observation of the precession of Mercury’s orbit,
they have also predicted a number of surprising phenomena. A few examples
are gravitational time-dilation, gravitational lensing of light, and the existence of
gravitational waves. These phenomena have been experimentally detected, and
the predictions of the theory are in exquisite quantitative agreement with the data.
General relativity can be applied from the scale of a human cell [156] to the universe
as a whole.

1.1.1 A collapse problem

Let us focus on the more troubling (and exciting) consequences of two more predic-
tions of GR. The existence of black holes and the impossibility of a static universe
were early predictions of the theory and, although unexpected, have been experi-
mentally confirmed using astronomical data. They directly point to regimes where
the theory fails.

1We take units in which c = 1 in this section.
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The black hole is described by the first ever discovered exact solution of the EFE:
the Schwartzchild metric [89, 237, 238]: a static, rotationally symmetric vacuum
solution. A black hole is surrounded by an event horizon, a surface that cannot
be crossed from the inside towards the outside. At the centre of the black hole
lies a curvature singularity, a region of spacetime in which coordinate-independent
quantities like the Kretschmann scalar RµναβRµναβ diverge. While this implies the
theory cannot make sensible predictions there, the theory also says these places can
be reached: while the event horizon shields the outside region from the singularity,
a body falling freely into the black hole will reach the singularity in a finite proper
time. For a while, black holes were thought of as the “unicorns” of theoretical
physics, too strange to actually be realised in nature. It was hoped that they
were a pathology of the high degree of symmetry of the ansatz and that they
could not come about as a result of normal astrophysical evolution. However, a
series of theoretical results, such as Oppenheimer’s and Volkoff’s [191], showed
that bodies above a certain mass will eventually collapse inside their event horizon.
Penrose famously showed [199] that the curvature singularity is not an artefact of
the high symmetry of the Schwartzchild metric, but that it is inevitable given mild
assumptions about the matter. Today, black holes are thought to be ubiquitous
in the universe. Gravitational wave observatories have detected numerous events
perfectly consistent with the merger of two black holes [160], or of a black hole and
a neutron star [70]. Recent efforts lead to the reconstruction of an image of the
extremely compact and massive object at the centre of the M87 galaxy that looks
exactly as a black hole event horizon predicted by general relativity [72].

The other way that GR predicts its own demise is at cosmological scales. When
considering the universe at its largest scales, one can approximate the density of
matter and radiation as essentially constant at all places. One is led to consider a
spacetime that is spatially homogenous and isotropic. The approximation reduces
the EFE to a set of equations governing how the scale factor of the universe evolves
in time. The scale factor determines how far two typical neighbouring galaxies are.
The theory predicts that the scale factor cannot be constant: at most moments it is
either increasing or decreasing, all galaxies are either getting closer or farther away
from each other. Observational data show that galaxies are indeed receding, faster
the farther away they are. Observations of the cosmic microwave background are
consistent with the Einstein equations with a small positive cosmological constant Λ
and cold dark matter [71]. Using this model to extrapolate further into the past, the
EFE lead to a curvature singularity in the far past, another point where the theory
cannot be trusted with its predictions. Hawking [127] showed that initial curvature
singularities are quite general features of expanding universes.

These two facts about the universe indicate that GR cannot tell the full story
for gravity. Something currently unknown must happen at the centre of black holes
and at the beginning of time.

1.1.2 Hard to modify

One way to resolve these singularities is to modify the equations of GR. Perhaps one
can find new equations that reproduce most predictions of GR in known regimes,
but somehow avoid these singularities. This is the programme of modified gravity,
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an active field of research with several internal directions [66, 184]. Many of the
modified gravity theories lead to falsifiable predictions, and indeed a number of
modified gravity theories are falsified by current observational data. We will not
attempt an overview of the subject, electing instead to offer one explanation as to
why the research programme is hard.

The Einstein field equations are considerably constrained by the two principles
that guided Einstein in the formulation of his theory [269]:

• Principle of general covariance: The equations of physics must take the
same form in all coordinate systems.

• Einstein equivalence principle: Physics is arbitrarily close to being inertial
in any sufficiently small spacetime region.

The first principle essentially implies that equations have to come in the form
of tensor field equations, while the second implies that spacetime must have the
geometry of a Lorentzian manifold. Following the analogy from Coulomb’s law to
Maxwell’s equations, one is led to look for a relativistic generalisation of Poisson’s
equation for the gravitational potential

∇2Φ = 4πGρ. (1.2)

The mass density ρ is promoted to the energy-momentum tensor Tµν . The stress
energy tensor is symmetric in its two indices. It should also be conserved by the
covariant derivative, so to express the conservation of energy in small volumes
according to the equivalence principle. Thus, the left hand side of the relativistic
version of the equation above then should feature a conserved symmetric tensor,
containing terms with, at most, second derivatives of the metric. The only such
tensor is

α(Gµν + Λgµν), (1.3)

for some constants α and Λ, where

Gµν = Rµν −
1
2gµνR (1.4)

is the Einstein curvature tensor, which contains terms with first and second derivatives
of the metric. The constants of proportionality α and Λ are then fixed to match
observational data, namely, Newtonian gravity and the observed expansion of the
universe.

The action principle offers another a posteriori way to see how natural and
constrained GR is. If we ask for the action to be computed via a Lagrangian density,
we are looking to find an action of the form∫

d4x L(x, g), (1.5)

where L is some function. Einstein’s two guiding principles almost completely fix
the form of the action. General covariance requires we integrate a scalar density,
that is, that we write the action as∫

d4x
√
−gL, (1.6)
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where
√
−gd4x is the invariant volume element and L is some scalar. Einstein’s

equivalence principle then asks us to build this scalar from the metric only. In
analogy with other field theories, we need kinetic terms with two derivatives of
the metric to have any meaningful dynamics. There is essentially only one scalar
formed with two derivatives of the metric: the Ricci scalar R. This argument leads
us straight to the Einstein-Hilbert action

SEH ∝
∫

d4x
√
−gR. (1.7)

Extremising this action leads to the vacuum EFE without cosmological constant.
Dimensional analysis also tells us that the proportionality constant has to be
proportional to 1/G. One can fix the proportionality constant by coupling gravity
with matter. The two principles also fix the shape of the matter action to

SM ∝
∫

d4x
√
−gLM, (1.8)

where LM depends on the metric in such a way that it reduces to the flat spacetime
Lagrangian when gµν → ηµν . This is can be done by the minimal coupling procedure,
replacing partial derivatives by covariant derivatives. The action

SEH + SM =
∫

d4x
√
−g

[ 1
16πGR+ LM

]
(1.9)

leads to the EFE (1.1). Finally one might add the cosmological constant by adding
a constant potential term to the action:

Scosmo = −
∫

d4x
√
−gΛ. (1.10)

Seen as the two guiding principles of GR put a lot of constraints on the equations,
modifying the EFE by adding terms on the left or right hand side of the EFE has the
potential effect of spoiling the principles of general covariance and the equivalence
principle. The action principle does suggest a straightforward modification of gravity,
by replacing the Ricci scalar R as a lagrangian density by some function f(R).

Of course the principles might not hold in all regimes, but since GR was so
successful and offers a good explanation of physics, rather than just fitting data, it is
arguably a good idea to take them seriously and use them as a guide to developing
new theory.

1.1.3 Another collapse offers a hint

At the end of the XIXth century, another jewel of classical physics was confronted
with a similar problem. Maxwell’s field equations predict that two point particles of
opposing charge cannot not form a stable configuration. The two charges, accelerated
by their mutual attraction, would emit radiation, loose energy, and thus fall closer
towards each other. This process leads them to emit an infinite amount of radiation
in a finite time. Experiments then showed that atoms are composed of negatively
charged particles surrounding a positively charged nucleus, many times smaller than
the radius of the atom itself [31, 231]. Exactly the kind system that Maxwell’s



1.2 General relativity as a quantum field theory 9

equations predicted to be unstable! Decades of theoretical effort to explain this
paradoxical stability of matter, together with many more puzzling phenomena
such as the spectral lines in emission and absorption spectra, the photoelectric
effect, and the observation of discrete values of angular momentum, eventually
lead to the formulation of quantum mechanics, quantum field theory, and quantum
electrodynamics [195].

This historical sketch suggests a hint for the resolution of GR’s singularities:
perhaps quantum theory can fix them. The quantum theory of matter, on its own is
not enough to prevent the singularities, as the gravitational pressure can beat any
pressure caused by known quantum effects in condensed matter. But a full quantum
theory of gravity could provide a solution to the gravitational collapse and furnish us
with predictions about what happens at these most extreme events in our universe.

There is another reason that the community wishes for a quantum theory of
gravity. While the EFE (1.1) couple the metric field with the energy-momentum
tensor field of matter, matter is described by quantum mechanics and its energy-
momentum density is not a real-valued tensor field Tµν with a single definite value
at any location, but a linear-operator-valued tensor field T̂µν acting on the Hilbert
space associated with matter. Thus in light of quantum mechanics, the EFE can
only make sense if either

• the right hand side is a real-valued tensor field, for example 〈T̂µν〉, or
• the left hand side is also some operator Ĝµν acting on an appropriate Hilbert

space.

The first option, where the angle brackets represent the expectation value of T̂µν ,
is often called semi-classical gravity. It offers correct predictions when the size of
the quantum fluctuations are small, i.e. for most astrophysical applications. But it
has otherwise maladapted features.2 For example, nothing forces ∂µ〈T̂µν〉 to vanish,
while ∂µGµν vanishes identically. So it can’t work as a fundamental theory.

The other option would be the development of a quantum theory of gravity.
Contrary of what is generally said, such a theory exists. Unfortunately, it does not
tell us much about the singularities.

1.2 General relativity as a quantum field theory
When first encountering the subject of quantum gravity, one is often offered a
statement to the effect that general relativity and quantum field theory are irrec-
oncilably different, and that it is impossible to “quantise” general relativity. This
is in fact a false statement. Quantum field theory and general relativity are not in
contradiction with each other. The opposite is true: there is a well-defined—and
predictive—quantum field theory of general relativity. Actually, there is a sense in
which quantum field theory predicts general relativity. The structure of relativistic
quantum field theory is rigid enough that it is possible to show that the only theory
that couples relativistically to energy density is, in fact, general relativity. Let’s see
why.

2Depending on one’s preferred solution to the measurement problem, semiclassical gravity has
been empirically disproven [194].
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1.2.1 Quantum field theorists could have discovered GR

Let us imagine a world where physicists have developed special relativity and
quantum field theory, but that nobody has succeeded in obtaining a relativistic
classical theory of gravity and instead physicists still relied on Newtonian gravity. An
argument has been made, notably by Feynman [100] and more recently by Schwartz
[236], that quantum field theorists in this imagined world could come up with general
relativity, and they could do so while bypassing all arguments about geometry. Here,
we sketch the main points of such an argument, following first [236] then [100].

The formulation of a quantum field theory is generally centred around an action
S, computed as the integral of a lagrangian density over a region of spacetime.
The lagrangian density at a point is generally a function of the fields and their
derivatives at that point. The fields might carry representations of various symmetry
groups, and the theory is said to have a given symmetry if the action is left invariant
under those transformations. In particular, compatibility with special relativity
requires the action to be invariant under the group of Poincaré transformations
(rotations, boosts, and translations). It is then informative to classify the various
fields according to the Poincaré group representation they carry. Fundamental fields
carry irreducible representations, and fundamental particles are identified with the
quantised excitations of modes of the corresponding field. Irreducible representations
are labelled by two Casimir operators, the mass m and angular momentum j.

Relativistic quantum field theory makes quite general predictions. For example,
the energy between two sources resulting from their interaction with a field of mass
m and angular momentum j depends on the distance r between the sources as

U ∝ e−αmr

r
, (1.11)

where α is some dimensionful constant. Thus, the range of an interaction depends
on the carrier’s mass m. The sign of the energy U depends instead on the angular
momentum j of the carrier. The energy between two positive charges is positive for
odd integer values of j, while it is negative for even integer values.

We summarise the known properties of gravity: it is a long range, attractive force
that couples to mass, or, more properly, mass density ρ. From relativity, we know
about the mass-energy relation, and that the relativistic quantity corresponding
to ρ is Tµν , which in the Newtonian regime reduces to ρ. According to quantum
field theory, forces are mediated by fields that carry representations of the Poincaré
group with integer angular momentum j and a certain mass m. The long range of
gravity implies the mass is close to 0. The fact that the force is attractive rules out
odd integer spins. So one is lead to study interactive field theories with j = 0, 2, . . .
fields. Theories with higher spin are progressively harder, so one starts with the
lowest orders first.

Successful quantisation depends on having a classical lagrangian formulation of
the field theory. Terms in the lagrangian have to be Lorentz scalars, the easiest way
to do so is to build them by contracting tensors. Thus a Lorentz, invariant minimal
coupling term for a j = 0 field φ and mass-energy is φT , where T = ηµνT

µν . This
does not lead to a theory that agrees with experiment [269], so one moves on to
spin-2.
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Fierz and Pauli have derived the unique lagrangian for a massive spin-2 field hµν
[102]. In the massless limit, the lagrangian is:

SFP = 1
4hµν�h

µν − 1
2hµν∂

µ∂αh
να + 1

2h∂µ∂νh
µν − 1

4h�h. (1.12)

A generic generic way to couple to this field would be a term such as hµνSµν , for
some symmetric tensor Sµν composed from the rest of the fields. For hµν to be a
massless spin-2 field, the only physical components should be the transverse ones, in
other words, the action should not care about the longitudinal components of hµν
and should be invariant under a change:

hµν 7−→ hµν − ∂µαν − ∂ναµ. (1.13)

For the coupling term hµνS
µν , this requires that the tensor Sµν be conserved by the

equations of motion, i.e. that ∂µSµν = 0. So it happens that a massless spin-2 field
hµν can couple to a conserved energy-momentum tensor Tµν . In fact, it seems that
it is made to couple to energy-momentum.

The resulting action

S1 =
∫

d4x [LFP + LM − λhµνTµν ] , (1.14)

when used to first order in hµν , already quantitatively describes a number of gravi-
tational phenomena. For example, it yields linear equations for hµν and can be used
to compute the motion of test particles given a fixed hµν . This allows to fix the free
parameter λ. This theory reproduces Newtonian gravity and makes quantitatively
correct predictions of gravitational time dilation and deflection of relativistic particles
by weak gravitational fields. This theory also predicts the existence of gravitational
waves, and allows to figure out the design of instruments to detect them.

However, the theory does not account for the precession of the perihelion of
Mercury. Also, it cannot be used consistently to second order, as the equations of
motion for the matter do not conserve Tµν to second order. One way to move forward
would the following. Notice that gravitational waves carry energy and momentum,
so that the gravitational field should also be a source of the gravitational field. But
notice also that the equations of motion obtained by varying (1.15) with respect to
hµν only have Tµν as a source. Thus, one might try to add some term F to LFP so
that variations with respect to hµν yield an equation of motion that has as a source
a tensor Tµν + χµν where χµν contains terms quadratic in hµν . Asking that the
new source be conserved (∂ν(Tµν + χµν) = 0) to second order fixes F uniquely. The
resulting theory,

S2 =
∫
d4x [LFP + F + LM − λhµνTµν ] , (1.15)

can be consistently used to second order. It is in quantitative agreement with the
observed the perihelion shift of Mercury, so this theory is in agreement with all the
first famous tests of general relativity.

However, the theory is not consistent to third order in hµν and above. One
can proceed the same way as above, adding term after term to the action and
requiring conservation of the resulting source. This becomes harder and harder,
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but, surprisingly there is a way to find a term that is analytical in hµν (so that
it contains arbitrary order terms) and that leads to a self-consistent theory. The
resulting action for the kinetic terms of hµν is then

S◦ ∝
∫
d4x

√
−det(ηµν + hµν)R [ηµν + hµν ] , (1.16)

which is precisely the Einstein-Hilbert action for gµν = ηµν + hµν .
Thus looking for a self-consistent theory of spin-2 field interacting with matter

leads to the Einstein-Hilbert action. Deser [78, 79] in fact proved that this is the
only such self-consistent theory.

1.2.2 The actual problem of quantum gravity

Quantum field theorists in our imagined world, having thus derived a classical
action for a relativistic theory of gravity could go on and compute its consequences,
hopefully stumbling upon the interpretation in terms of Lorentzian geometry. They
would realise that the gauge invariance under transformations (1.13) is the linear
version of general covariance. They would also discover the singularities predicted
by the theory at the end of stellar evolution and at the beginning of time. So the
next question they might ask is exactly the question we are asking: do quantum
effects fix the collapses, like they fixed those of the atom?

Unfortunately, the answer is no. But the problem is not that the action (1.16)
cannot be quantised. The theory obtained from this action is non-renormalisable, but
this does not mean the theory is useless. Non-renormalisable theories are predictive
because, up to a given energy cut-off, only a finite number of measurements have to be
made to fix the free parameters, and then one can compute predictions for arbitrary
experiments in that energy range. Indeed, because the planck mass is so large
compared to other high energy physics scales, only the first few terms have played a
role in experiments. In fact, it is possible to compute genuine quantum corrections
to the orbit of mercury by considering the renormalised one loop correction to
the graviton propagator, and this leads to a genuine quantum modification to the
perihelion shift of mercury of one part to 1090 [236].

The actual problem is that perturbation theory breaks down at energy scales
larger than planck mass. One needs to find a different theory that works at higher
energy scales and that reduces to general relativity at lower energy scales. This
sort of theory is called a UV completion, and the non-renormalisable theory is then
the low energy effective field theory of its UV completion. History teaches that
the UV completion of a theory can be quite different from the original effective
theory. It can also be the case that a theory can have multiple UV completions. For
example, the Schrödinger equation is the low energy limit of both the Klein-Gordon
equation and the Dirac equation. This is also the case with quantum gravity. At
the moment we have several candidate UV completions, the most famous ones being
string theory [277] and loop quantum gravity [223, 230]. String theory continues
with the perturbative approach, looking for a UV finite perturbative theory, while
loop quantum gravity is based on a non-perturbative approach, quantising the whole
geometry gµν rather than the perturbation hµν . For an overview of the approaches,
their conceptual differences and difficulties, see [42].
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1.3 Why do we need it, again?
Since the low energy theory is predictive, the differences between the UV completions
only appear at the scales where the low energy theory breaks down. As we have
seen, the perturbative quantisation of general relativity yields predictions that are
exceedingly similar to general relativity itself. The most straightforward ideas to
test the quantum nature of gravity, such as reaching the non-perturbative regime
of particle physics or detecting quantised gravitational radiation seem completely
infeasible [92, 220]. Cosmological evidence from the CMB or the distribution of
primordial black holes has been inconclusive thus far. This absence of any positive
evidence for a quantum theory of gravity is part of the difficulty of settling on a
specific UV completion.

Additionally, the absence of any quantum gravitational effect has lead some to
question the very idea that gravity is mediated by a quantum field [43, 190, 200].
While there are theoretical arguments for the need of a quantum theory of gravity,
there is no direct empirical reason for it. This situation might change in the near
future.

Over the recent years, a number of experimental proposals aim to detect an
effect that can only be explained by a genuinely non-classical gravitational field.
The proposals include the generation of entanglement between two systems due to
gravitational interaction alone. Proposals include two particles in adjacent matter-
wave interferometers [34, 164], two particles cooled down to the ground state of
a harmonic trap and then dropped side-by-side[149], and entanglement between a
resonator and a particle in a trap [44]. Another proposal aims at detecting a different
effect, the development of non-gaussianity in a Bose-Einstein condensate [140].

Two things are worth pointing out now. First, these are not simply gedanken
experiments: even though their feasibility is still being assessed, these are actual
experimental proposals. The authors of [34] have been publishing several studies
regarding the experimental practicalities of their proposal [167, 253, 256], while [149]
went through a considerable revision during peer-review. And while the “table-top”
label originally attached to these proposals was most likely too optimistic, they seem
within reach of feasible technology [8]. Second, the interest around these experiments
is partially justified by results from quantum information theory. The experiments
seek to detect an effect that is predicted by linearised quantum gravity. A positive
result, would thus corroborate this theory, and falsify theories that do not predict
this result. However, arguments from quantum information theory [112, 165] imply
that a whole class of possible theories is ruled out by these experiments, namely, any
theory in which the gravitational field does not have non-commuting variables. We
will overview one of these results in detail in sections 2.4 and 2.5.

These experiments will not be able to distinguish between different UV comple-
tions of linearised quantum gravity. They will, however, definitely rule out either
linearised quantum gravity, or the hypothesis that gravity is mediated by a classical
field.
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1.4 A low energy test of quantum gravity
Now, let us describe an idealised version of the matter-wave experiment proposed in
[34]. This experiment aims at detecting gravity mediated entanglement (GME).

1.4.1 GME: experimental setup

Measurements

Recombination

Free Fall

Superposition

Preparation

tim
e

space

d l

t

Figure 1.1. Sketch of the simulated experimental setup as proposed in [34]. Two
masses are set in a spin-dependent superposition next to each other and allowed to
interact only via gravity.

The experiment features two adjacent interferometers, each traversed by a mass
with an embedded spin. The interferometers put each particle in a spin-dependent
superposition of positions, then the particles are allowed to interact only via gravity
for a time t before the interferometers undo the superposition. Finally, the spin on
the particles is measured.

Let us go over the experiment, breaking it down in five stages, see figure 4.1. Let
|↑〉 , |↓〉 denote normalised states of the spins aligned and anti-aligned to the z axis.
Let |C〉 , |L〉 , and |R〉 denote normalised states in the centre-of-mass Hilbert space
of each particle, peaked at the centre, left, and right branches of their interferometer.
We will write down the total state up to an overall normalisation factor.

At the Preparation stage, the particles of mass m are set at the centre of their
interferometers, with the spin aligned to the x axis. The state of the system is:

|ψ〉P =
(
|↑〉+ |↓〉

)
⊗
(
|↑〉+ |↓〉

)
⊗ |CC〉

=
(
|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉

)
|CC〉

(1.17)
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During the Superposition, stage a series of EM pulses modifies the position of
the masses depending on z-component of the spin state resulting in each mass being
in a spin-dependent path superposition, at rest at a distance l/2 from their initial
position. Assuming that the two interferometers are identical, and exploiting the
phase ambiguity in defining |L〉, the state after superposition is:

|ψ〉S = |↑↑〉 |LR〉+ |↑↓〉 |LL〉+ |↓↑〉 |RR〉+ |↓↓〉 |RL〉 . (1.18)

At this point, the centre-of-mass of each particle is entangled with its spin, but there
is no entanglement between the two particles.

Now, the particles are in free fall for a time t. The experiment is designed in such
a way that the only relevant interaction between the two particles is the gravitational
force. Notably, keeping the Casimir-Polder interaction at bay sets a lower bound
for the distance of closest approach d between the masses. The EM pulses of the
Superposition stage also had to take care to “hide” the spin deep into the particle
[34]. These experimental considerations aside, the states |R〉 and |L〉 act to a very
good approximation as energy eigenstates during the relatively short time t of the
experiment [54], and they will thus simply each accumulate a phase. At the end of
the Free Fall stage, the state is

|ψ〉FF = eiφLR |↑↑〉 |LR〉+ eiφLL |↑↓〉 |LL〉+ eiφRR |↓↑〉 |RR〉+ eiφRL |↓↓〉 |RL〉 (1.19)

For generic values of the phases φLL, φLR, φRL, and φRR, the two particles are now
entangled.

The Recombination stage now undoes what was done by the Superposition stage.
Again ignoring a possible global phase, the state of the system is now:

|ψ〉R =
(
eiφLR |↑↑〉+ eiφLL |↑↓〉+ eiφRR |↓↑〉+ eiφRL |↓↓〉

)
⊗ |CC〉 . (1.20)

The net effect is that the centre-of-mass degree of freedom is not correlated with the
spins anymore. Whatever entanglement was developed between the masses is now
present in the spin degrees of freedom only.

Tracing away the positions of the particles, the state of the spins at the moment
of measurement is then:

|ψ〉M = eiφLR |↑↑〉+ eiφLL |↑↓〉+ eiφRR |↓↑〉+ eiφRL |↓↓〉 . (1.21)

Repeated runs of the experiment allow to study the final state of the spins, and
verify the presence of entanglement.

1.4.2 Quantum gravitational phases

Let us now compute the phases that the particles develop during the Free-Fall stage.
The particles are light, and the perturbation of the metric due to their presence

is weak enough so that we may indeed apply linearised quantum gravity. We assume
that the particles are moving slowly at all times, and that the timescales of relevance
are much larger than the distances between the particles in each branch, so that
we may ignore transient effects due to the movement of the particles. In this way,
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in each branch, the metric perturbation is in a coherent state peaked around the
classical static solution sourced by the masses.

Write as |hXY 〉 the state of the metric perturbation corresponding to positions
|XY 〉 of the particles. Then we can track the evolution of the states of the particles
and metric by trivially replacing |XY 〉 with |XY 〉 |hXY 〉 everywhere in the states
(1.17) to (1.20) above. The phases are then due to the energy of such a configuration,
which can be approximated to a good accuracy by the Newtonian potential energy
of the configuration. Namely,

φXY = −EXY
t

~
, (1.22)

and thus

φLR = Gm2t

(d+ 2l)~ , φLL = Gm2t

(d+ l)~ = φRR, φRL = Gm2t

d~
. (1.23)

Then, up to a global phase and normalisation, the state for the spins at the moment
of measurement is

|ψ〉M = |↑〉
(
eiφ̃LR |↑〉+ |↓〉

)
+ |↓〉

(
|↑〉+ eiφ̃RL |↓〉

)
, (1.24)

where we have set φ̃LR = φLR − φRR and φ̃RL = φRL − φRR. We can quantify the
amount of entanglement between the spins by taking the square modulus of the
overlap of the state in the parenthesis, which is

O = 1
2 + 1

2 cos(δφ), (1.25)

with
δφ = φ̃LR + φ̃RL = Gm2t

~

(1
d

+ 1
d+ 2l −

2
d+ l

)
. (1.26)

Thus, for generic parameter values, quantum field theory of gravity predicts that
the masses will get entangled.

Note that these phases were computed in the static approximation. These are
the same phases one would get from an instantaneous newtonian interaction term

HI = −Gm
2

r
(1.27)

in the total hamiltonian of the system. Indeed, this is how the computations in
the original papers [34, 149, 164] were done. Some, most notably [6], have objected
that this spoils the argument, as it is a direct interparticle interaction rather than
a mediated one. In chapter 5, we will see how to derive these phases from first
principles, using the perturbative quantum theory of gravity.

1.4.3 Experimental considerations

There are four main experimental parameters subject to various constraints: the
mass of the nanoparticles m, the distance of closest approach d, the size of the
superposition l, and the duration of the superposition t. One of the main constraints
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comes from decoherence: the masses have to be protected from interacting with the
environment otherwise the entanglement between them will be hidden. Larger l and
larger m will lead to faster decoherence, and t must be much smaller than the typical
decoherence timescales. Another constraint comes from preventing interactions
between the masses other than gravity: if the masses come too close to each other
other, they could start interacting via Casimir-Polder type electrostatic effects. This
will force an upper bound on d as a function of m. Other constraints will come from
the specifics of the experimental setup, such as the strength of the fields required to
create the superpositions and the size and control of the various moving parts of the
apparatus.

Future experimenters will have to take all such constraints in consideration. Here,
we will limit ourselves to some basic observations. We will see in the next section
how to certify the presence of entanglement using an entanglement witness. For now,
it suffices to know that entanglement is easier to detect for smaller overlap O; easiest
for O ≈ 0, so for δφ ≈ π. Thus, we can see (1.26) as defining an entanglement rate
r as a function of the parameters l, d and m. We can take the approximation l� d,
reflecting the realistic assumption that the delocalisation of a massive nanoparticles
is going to be small. To leading order in l/d, this yields:

r = 2G
~
m2

d

(
l

d

)2
= 2

(
m

mP

)2 ( l
d

)2 c

d
(1.28)

The entanglement rate r is inversely proportional to d3, so one should pick the smallest
possible value of d. To avoid interactions other than gravity, this is d ≈ 200 µm.
Thus, c/d ≈ 1012 s−1, is an encouraging baseline. However, the other two factors
force r < c/d. Decoherence makes it difficult to have larger values of l, assuming
optimistically that l/d ≈ 1/100 then yields

r ≈
(
m

mP

)2
108 s−1. (1.29)

Thus, we see that pushing full quantum control of masses approaching the planck
mass for the particles in superposition holds the key to witnessing this quantum
gravitational effects. In particular, to have for r ≈ 1 s−1, which requires the coherence
to last at least as long, means m ≈ 10−4mP ≈ 10−12 kg.

These are rough3 figurings, but they give an idea of the requirements on the
experiments. The details of course will depend on the specifics of the setup.

As mentioned above, while a precise measurement of the entanglement rate
can serve as a quantitative test for of quantum gravity, the simple detection of
the presence of entanglement at the moment of measurement is an interesting
qualitative test. Indeed, as we will see in the next chapter, detecting the presence of
some entanglement is sufficient to conclude that the field mediating the interaction
between the two masses is not a classical field. Thus one is interested in experimental
protocols capable of verifying the presence of entanglement, which we will also cover
in the next chapter.

3For reference, the parameters in the original proposal arem ≈ 10−14 kg, l ≈ 250 µm, d ≈ 200 µm,
which yield δφ ≈ 0.5.
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Chapter 2

Quantum Information Theory

Quantum mechanics is astonishingly
simple—once you take the physics
out of it!

Scott Aaronson [135]

Claude Shannon formalised the concept of information carried by a system as the
number of perfectly distinguishable states it can be in and introduced the concept
of a bit a system that can be in either of two perfectly distinguishable states [240,
241]. These states are generally denoted 0 and 1. The bit is the fundamental unit of
information, as it can be used to represent the truth value of a given proposition. In
other words, it can be the answer to any “yes or no” question. If the state of the
bit is not known with certainty, one can assign a probability distribution {p0, p1}
over its two possible values, where p0 + p1 = 1. Note that a classical bit can be
embodied by any number of systems, from coins to switches. This is an advantage,
as it makes information an abstraction similar to the notion of numbers. Indeed,
classical information theory is the study of how information can be manipulated,
processed and transmitted, by considering abstract manipulations of strings of 0s
and 1s.

Quantum information theory is similarly centred around the concept of a qubit:
a quantum system that can be in two perfectly distinguishable states. A bit can
be encoded in the value of the z-component of the spin of an electron, or its x-
component, or the component along any axis in fact. Any two-valued observable will
do. Once chosen, it will be called the computational basis and its two eigenstates
will be called |0〉 and |1〉. A generic pure state will be given by a Hilbert space vector

|ψ〉 = α |0〉+ β |1〉 , (2.1)

for two complex numbers α and β such that |α|2 + |β|2 = 1. The two states

|±〉 = 1√
2
|0〉 ± 1√

2
|1〉 (2.2)

are often used. The overall phase is irrelevant, and it follows that any qubit pure
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state can be labelled by two real numbers (θ, φ) ∈ [0, π]× [0, 2π] and φ as

|ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 . (2.3)

Thus, the pure states of a qubit correspond to a two-dimensional sphere, known as
the Riemann, or Bloch, sphere. Antipodes of the sphere correspond to perfectly
distinguishable states.

Classic examples of qubits include the spin of an electron and the polarisation
of a laser, but any two-dimensional subspace of a quantum system will do the
job. Then quantum information theory studies the information processing that
collections of such finite-dimensional quantum systems afford, assuming (perfect
or limited) control of these systems. From this point of view, a system associated
with a d-dimensional Hilbert space is equivalent to any other system associated with
a d-dimensional Hilbert space. Quantum information theory is the theory of the
general evolution of finite-dimensional systems given arbitrary manipulation powers.
The protocol that are thus devised can then be implemented on a number of different
substrates.

2.1 Operational formalism
The state vector representation is somewhat limited for the needs of quantum
information theory. Dealing with multiple subsystems, classical information, and
classical uncertainty naturally leads to consider density operators as representing
the state of the system, and study the evolution of these operators. We now provide
a brief review.

2.1.1 Density operators

A density operator, or density matrix, ρ is a trace 1, positive operator. The density
operator is used to compute expectation values as follows. If the state of a system is
ρ, then the expectation value of an observable A is

〈A〉 = trAρ. (2.4)

After finding the value a of the observable, one updates the state to

ρ 7−→ |a〉〈a| ρ
tr |a〉〈a| ρ. (2.5)

During unitary evolution U of the system, the density operator evolves as

ρ 7−→ UρU †. (2.6)

One reason to use the density matrix is that it allows to encode classical uncer-
tainty about the quantum state. If you believe that a system is in state |ψ〉 with
probability p and in state |φ〉 with probability 1− p, then the expectation value for
any observable A is given by

〈A〉 = p 〈ψ|A|ψ〉+ (1− p) 〈φ|A|φ〉 . (2.7)
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This can easily be cast in the form (2.4) by using a resolution of the identity:

〈A〉 =
∑
i

(
p 〈ψ|i〉〈i|A|ψ〉+ (1− p) 〈φ|i〉〈i|A|φ〉

)
=
∑
i

〈i|A
(
p |ψ〉〈ψ|+ (1− p) |φ〉〈φ|

)
|i〉

〈A〉 = tr ρA,

(2.8)

where we have defined
ρ = p |ψ〉〈ψ|+ (1− p) |φ〉〈φ| . (2.9)

In general, a density operator can be used to compute the probabilities of measure-
ments performed on statistical ensembles of states. Given a set of states {|ψn〉},
if a quantum system is with probability pn in the state |ψn〉, then the statistics of
measurements will be reproduced by

ρ =
∑
n

pn |ψn〉〈ψn| (2.10)

and the rules (2.4) and (2.5). Note that a given mixed ρ will correspond to multi-
ple ensembles. Indeed, the computation above shows us that different ensembles
represented by same density operator cannot be distinguished by any kind of mea-
surement.

It is useful to draw a distinction between pure and mixed states. A pure state
satisfies

tr ρ2 = 1, (2.11)

while for a mixed state
tr ρ2 < 1. (2.12)

By diagonalising the density operator, and using the property tr ρ = 1, one sees
that a pure state is always of the form ρ = |ψ〉〈ψ|, while a mixed state will always
reproduce the statistics of a statistical ensemble of states. Since there is a bijection
between the Hilbert space rays and the pure density operators, the density operator
formalism is a proper generalisation of the Hilbert space vector. Finally, let us
mention the existence of a special density operator, the mixed state

1
d

d∑
i=1
|i〉〈i| , (2.13)

which represents the state of minimal information about a system.

2.1.2 Bloch ball

Let us consider as an example the state space for qubits. The space of density
operators for a qubit is the set of 2× 2 positive matrices. There is a neat way to
visualise it. The 2× 2 identity matrix

I =
(

1 0
0 1

)
(2.14)
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and the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.15)

form a basis for self-adjoint 2 × 2 matrices. If ~r is a 3-component vector of unit
norm, then the matrix

1
2I + 1

2~r · ~σ, (2.16)

is a unit trace, positive operator. Thus, the space of density operators of a qubit is
isomorphic to a 2 dimensional ball, the Bloch ball. The boundary consists of the
pure states, and the inside the mixed states.

In the QI literature, the Pauli matrices are often represented as X, Y, and Z.

2.1.3 Partial trace

Density matrices are useful in quantum information theory also because they naturally
come up in the study of multiple systems. Given two systems associated with Hilbert
spaces H1 and H2, respectively, the Hilbert space of the combined system is given by
the tensor product H1 ⊗H2 of the two Hilbert spaces. Given bases {|a〉} and {|m〉}
for H1 and H2, the set of states {|am〉 ≡ |a〉 ⊗ |m〉} forms a basis for the Hilbert
space H1 ⊗H2, and a generic pure state will be written as∑

am

αam |am〉 . (2.17)

One might be interested in the statistics of measurements on H1 only. Say for
example one is doing a projective measurement {Pk} on the first subsystem, then
the probability of obtaining the result k, given the state above is

〈Pk ⊗ I〉 =
∑
mnab

α∗am 〈am| (Pk ⊗ I)αam |bn〉 , (2.18)

where I represents the identity on H2. One can rearrange the expression as

〈Pk ⊗ I〉 =
∑
mnab

α∗amαbn 〈a|Pk|b〉 〈m|n〉

=
∑
mab

α∗amαbm 〈a|Pk|b〉

〈Pk ⊗ I〉 = tr
∑
mab

α∗amαbmPk |b〉〈a| .

(2.19)

We see that the right-hand-side of the last equality only involves the Hilbert space
H1. It would be desirable to find a state ρ1 associated only with H1 that is able to
reproduce the statistics of measurements on H1, given the state ρ. Indeed, this is
possible by tracing out system 2. Define the partial trace over the system 2 as

tr2 |ψ〉〈ψ| ⊗ |φ〉〈φ| = |ψ〉〈ψ| tr(|φ〉〈φ|). (2.20)

Then we can assign a state to system 1 by tracing out system 2:

ρ1 = tr2 ρ; (2.21)
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ρ1 is known as the reduced state. It easy to check that this produces the correct
statistics for measurements on subsystem 1 only, i.e.,

〈Pk ⊗ I〉 = trPkρ1. (2.22)

By using the fact that the trace yields an inner product on the space of self-adjoint
operators, one can show that ρ1 is the only density operator that does the job for
all observables.

Even though we started with the pure state (2.17), considering measurements on
subsystems naturally leads to density operators and potentially mixed states. Density
operators are the natural objects to study multipartite systems. Also interesting
to note that the reduced state ρ1 will in general be a mixed state even though the
original state ρ is pure. This is one of the hallmarks of entanglement, as we will see
in section 2.2, and will play a crucial role in the phenomenon of decoherence, section
2.3. A mixed state can reproduce the statistics of different ensembles, but it also
reproduces the statistics of a system that is entangled with an unobserved system.

2.1.4 Evolution, instruments and channels

Since the density operator is a natural generalisation the state vector in the context
of classical uncertainty and multipartite systems, and since quantum information
theory is interested in arbitrary manipulations of a given system, it is good to study
possible maps between density operators on their own terms. We proceed in an
axiomatic way, and then connect with a physical interpretation. This argument is
similar to that in [183].

First, let us allow that the input and output Hilbert spaces Hin and Hout are
different. This way, we can represent operations such as adjoining a system, or
ignoring parts of the system. Since quantum experiments yield different outcomes
probabilistically, we define an evolution by a set of maps E = {Ei} from positive
operators on Hin to positive operators on Hout, where i labels one of the mutually
exclusive outcomes. We ask that trEiρ is the probability of the outcome i to happen
and thus that

0 ≤ trEiρ ≤ 1 and
∑
i

trEiρ = 1, (2.23)

for all density operators ρ. Next, we ask each of the Ei to be convex linear, meaning
that

Ei
(
pρ+ (1− p)σ

)
= pEiρ+ (1− p)Eiσ (2.24)

for any two states ρ and σ and probability p. This is so that the probabilities given
by trEiρ behave consistently with stochastic mixtures. Finally, we want the state
after applying Ei to still be a positive operator. This requires that Ei is a completely
positive map. Positive means that Eiρ is a positive operator on Hout whenever ρ
is a positive operator on Hin. Completely positive means that, for arbitrary HA,
(IHA ⊗Ei) is a positive map from the operators on HA⊗Hin to those on HA⊗Hout,
where IHA is the identity map on operators of HA. The requirement of complete
positivity ensures that the applying E to a subsystem always yields a well-defined
state of the combined system.
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In sum, each of the maps Ei is a trace non-increasing, completely positive (CP)
map. If the outcome i attains, then the state is updated to

ρ 7−→ Eiρ

trEiρ
, (2.25)

which is again a density operator. The set E = {Ei} is called an instrument, or
quantum operation. We can also define a map induced by E itself. If we do not know
or care about the result, we weight each of the outcomes above by their probability
p(i|ρ, E) = trEiρ and then we have

Eρ =
∑
i

p(i|ρ, E) Eiρ

trEiρ
=
∑
i

Eiρ. (2.26)

Any evolution with a single outcome, like E , or an instrument with a single outcome,
is known as a quantum channel, and is represented by a completely positive, trace
preserving (CPTP) map. The formalism of positive operators and completely positive
maps is the most general way to formulate the evolution of quantum systems.

Let us connect this rather abstract formalism to unitary evolution. If a system
undergoes a unitary evolution U , then its density operator changes as

ρ 7−→ U [ρ] = UρU †, (2.27)

which is derived by evolving each state in an ensemble that gives ρ. The map
U is then known as a unitary channel. Suppose instead that the system under
consideration interacts with another system initially in a pure state |a〉, so that the
evolution of the combined system is a unitary channel, and then the second system
is ignored. The resulting evolution for the state ρ of the initial system is

ρ 7−→ tr2
[
U [ρ⊗ |a〉〈a|]

]
. (2.28)

This is a CPTP map. Indeed, any CPTP map can be represented this way, this
result is known as Stinespring dilation [250]. Say that the ancillary system instead
is subjected to a projective measurement represented by the projectors {Pk}, then
each map

ρ 7−→
[
(I ⊗ Pk)U [ρ⊗ |a〉〈a|]

]
. (2.29)

is a trace non-increasing CP map, and together they form an operation. Thus every
instrument can be understood as the system interacting with an ancilla, and then
the ancilla being measured. This result is known as Ozawa dilation [193].

2.2 Entanglement
It is hard to understate the importance of quantum entanglement in the field of
quantum information. The use of entangled states is the key element in many of the
protocols that make quantum information superior to classical information, such
as secure distribution of cryptographic keys [96]; superdense coding [23], in which
re-uniting two entangled qubits allows to transmit two bits of information while
transmitting a single qubit; quantum state teleportation [22], allowing to transfer a
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full qubit state by sending two classical bits of information; and Shor’s algorithm
[242] for factoring large numbers.

Operationally, the property that makes entangled states special is that they allow
to create correlations between spatially separated system that are stronger than
what can be achieved with classical information systems. These correlations are so
strong, in fact, that they put in question our very notions of agency and causality.
We are referring of course to Bell’s theorems1 [16, 18], which we will discuss later in
more detail, in section 3.4.

We will forego a detailed explanation of the various applications of quantum
entanglement, referring the reader to standard texts, such as [137, 183]. In this
section, we will focus on the most relevant part of quantum entanglement for the
work in this thesis, namely, the experimental certification of entanglement and its
role in the decoherence process.

The mathematical definition of entanglement is as follows. Given two systems
associated with Hilbert spaces H1 and H2, respectively, the Hilbert space of the
combined system is given by the tensor product H1 ⊗H2 of the two Hilbert spaces.
A state ρ of the combined system is said to be separable if it can be written as a
convex combination of a number of factor states, i.e. if

ρ =
∑
n

pn ρn ⊗ σn. (2.30)

A state is entangled if it is not separable.

2.2.1 Entanglement certification

Given the state of a system, one can check if the state is entangled by checking that
it is not separable. If the full state ρ is pure, then there is fairly easy way check if
the system is entangled or not. If ρ = |ψ〉〈ψ| then ρ is separable if and only if |ψ〉
is separable, meaning |ψ〉 = |a〉 |b〉. However, unavoidable measurement noise and
interactions with the environment will cause most systems to display mixed state
statistics. Thus we need criteria to detect separability in mixed states. In general,
for an arbitrary tensor decomposition of an arbitrary Hilbert space, proving that
a given state is separable is quite hard, approaching NP-hardness, but there are a
number of both necessary and sufficient conditions for separability (see [159] and
citations therein).

An easy to check, sufficient condition for separability is known as the positive
partial transpose criterion. The partial transpose ρΓ of a bipartite state ρ is obtained
by transposing on only one of the subspaces:

〈im|ρΓ|jn〉 = 〈in|ρ|jm〉 . (2.31)

If ρΓ is a positive operator, then ρ is separable [201]. For states of C2 ⊗ C2 and
C2 ⊗ C3, this condition is both necessary and sufficient [136]. This is all that would

1While not every entangled state allows to violate the Bell inequalities on their own, for any
state ρ that does not violate the inequalities, there is another state σ that also does not violate
the inequalities, such that ρ⊗ σ allows the violation [170]. This means that any entangled state ρ
displays qualities that cannot be replicated by classically correlated systems.
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be needed in practice to verify or falsify the presence of entanglement in the GME
experiment discussed in section 1.4.1.

Knowledge of the full quantum state can only be obtained via quantum state
tomography. In quantum state tomography, one measures the expectation values of
a set of different observables that are sufficient to fix all the independent components
of the quantum state. This process can be quite costly, as it requires to perform the
experiment repeatedly to estimate with enough precision all of the observables.

Consider for example the case of two qubits. A positive operator on C2 ⊗ C2

has 16 complex components. Self-adjointedness implies that the four diagonal
components are real and of the remaining 12, only 6 are free to take any complex
value. The trace 1 requirement imposes one further real constraint, so there are in
total 4 + 6× 2− 1 = 15 free real components. These can be obtained by measuring
〈σµ⊗ σν〉, µ, ν = 0, 1, 2, 3, where σ0 is the identity, and σi are the Pauli matrices. In
practice, this requires only 9 different measurement schemes, one for each correlation
〈σi ⊗ σj〉, as the remaining 6 single-system expectation values can be obtained from
the resulting data set. In general, for N qubits, there are 4N − 1 real components,
that can be estimated with 3N measurements schemes. The fact that the state
can be inferred by performing measurements on each system separately, a property
known as tomographic locality, plays a key role in the reconstructions of quantum
mechanics, see section 3.1.

Fortunately, there also exist techniques that provide a sufficient condition to
detect the presence of entanglement without knowing the quantum state. One such
condition is of course the violation of a Bell inequality. But not all entangled states
allow the violation of a Bell inequality on their own. A more practical technique
is that of detection of entanglement via an entanglement witness [136, 252]. An
entanglement witness W is an observable such that

trWσ ≥ 0 (2.32)

for all separable σ but
trWρ0 < 0 (2.33)

for at least one entangled state ρ0. It follows that any state such that trWρ > 0 is
an entangled state. Thus, measuring a negative expectation value for W in the lab
implies that the state generated is an entangled state. The intuition behind this is
pretty simple. We recall the map

(A,B) 7−→ trAB (2.34)

is a scalar product on the space of Hermitian operators, making the latter a normed
real vector space. The set of S separable density operators is a convex subset of this
space. It follows that for any point ρ0 not in S, there is a hyperplane separating S
from ρ0. Then every point on the same side of the hyperplane as ρ0 is automatically
not in S.

Note an important difference between an entanglement witness and the violation
of a Bell inequality: the latter is relatively theory-independent. To claim that one
has seen a negative value for 〈W 〉 implies one is confident in the workings of one’s
apparata and knows what observables are being measured. This normally entails
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assumptions about the quantum physics of the experimental setup. In contrast,
Bell’s theorem imposes constraints on correlations between a set of observables,
regardless of what these observables are, thus, a violation of a Bell inequality is said
to be a device independent way of certifying entanglement.

2.2.2 Application to the GME

Having an idea of the state of your system helps to build the entanglement witness
W to certify the presence of entanglement. As we saw in section 1.4.1, quantum
gravity predicts that the state of the spins at the end of the experiment is

|ψ〉M = |0〉
(
eiφ̃LR |0〉+ |1〉

)
+ |1〉

(
|0〉+ eiφ̃RL |1〉

)
, (2.35)

where we are using the computational basis |0〉 = |↑〉 , |1〉 = |↓〉 In practice, the
actual state might differ from the one above because there will be noise in the
implementation of the experiment, but the actual state should approximate this one.
Bose et.al. [34] proposed this entanglement witness

WB = I ⊗ I − σx ⊗ σz − σy ⊗ σy, (2.36)

which evaluates to

〈WB〉 = 1
2
[
1 + cos

(
φ̃RL − φ̃LR

)
+ cos φ̃RL − cos φ̃LR

]
, (2.37)

where we recall that φ̃RL and φ̃LR are proportional and grow linearly in time, with
φ̃RL > φ̃LR. While 〈WB〉 will eventually become negative, Chevalier et.al. [54]
pointed out that the witness

WC = I ⊗ I − σx ⊗ σx + σx ⊗ σy + σy ⊗ σz, (2.38)

which gives

〈WC〉 = 1
2
[
1− cos

(
φ̃LR − φ̃RL

)
− sin φ̃LR − sin φ̃RL − sin

(
φ̃LR − φ̃RL

)]
, (2.39)

is negative for arbitrarily small values of free fall time, and is thus better suited to
the experiment.

2.2.3 Local operations, classical communication

A well-known result in quantum information theory is that two spatially separated
agents, each acting on their own quantum system, cannot create entanglement
between their systems, even if they coordinate their actions by transmission of
classical information [137].

The argument is quite simple. A local operation is represented by a map E ⊗ F ,
where E and F are channels. The channels could represent an instrument where no
post-selection is made on the basis of the result; this is because the two parties are
not allowed to communicate, so they cannot coordinate their behaviour. Allowing
one transmission of classical information from one party to the other, allows the
choice of one operation conditional on the result of the other. This situation is one
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round of LOCC (local operations and classical communications) and is represented2

by a map ∑
i

Ei ⊗F (i), (2.40)

where {Ei} is an instrument and each F (i) is a channel. The F (i)s have to be
deterministic channels as the second party is not allowed to send the result of their
operation to the first party in this scenario. The map representing a round of LOCC
where the second party sends information to the first is defined similarly. If the
state of the system is initially separable, it will still be separable after one round of
LOCC, since∑

i

(
Ei ⊗F (i)

)
(ρ⊗ σ) =

∑
i

Eiρ⊗F (i)σ =
∑
i

pi ρi ⊗ σi. (2.41)

Thus an initially separable state will remain separable after any number of LOCC
rounds.

This result was used in [34] to argue that the detection of GME would prove that
gravity is a quantum force. However, as pointed out by [164], one might distrust
this argument based completely on quantum theory, as we do not know that gravity
obeys either quantum or classical laws, and might follow a new set of laws. They
argue that one ideally needs a similar argument in a more general framework. This
is achieved in [165] and [112], as explained in sections 2.4 and 2.5.

2.3 Decoherence
Decoherence is the phenomenon by which quantum interference effects are cancelled
because of entanglement. As we will see, a certain amount of decoherence is
inevitable in most realistic setups, as the environment will get entangled with the
system under consideration. This suppresses interference effects in systems that have
undergone large spatial superpositions. Decoherence is one of the main obstacles
in performing quantum experiments. On the other hand, decoherence is one of the
main mechanisms that allows the classical world to emerge from the quantum world,
as we will see in chapter 8.

2.3.1 In the double slit experiment

Decoherence is most easily demonstrated by considering the double-slit experiment
with photons.

Suppose the state of the photons at the screen is given by

|ψ〉 = 1√
2
|ψA〉+ 1√

2
|ψB〉 , (2.42)

where |ψA〉 is the what state would be if only slit A were open and |ψB〉 the one
with only B open. The density of the detection events on the screen, as a function

2This argument can easily be extended to model the transmission of information by an actual
physical system. We will not do this here, since we will overview a more general argument in section
2.5.
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of the position z, is given by

Iψ(z) ∝ | 〈z|ψ〉 |2 = 1
2 | 〈z|ψA〉+ 〈z|ψB〉 |2. (2.43)

The resulting pattern is not proportional to the average of the intensities resulting
from having either one or the other slit open:

Iψ(z) 6= IA(z) + IB(z) ∝ | 〈z|ψA〉 |2 + | 〈z|ψB〉 |2. (2.44)

Notably, Iψ has dark bands, known as interference fringes, where IA + IB has none.
Now let us include a nearby atom in the description, which could be in either of

two states |0〉 and |1〉. Let us assume that the state of the whole system is then

|Ψ〉 |0〉 = 1√
2
|ψA〉 |0〉+ 1√

2
|ψB〉 |0〉 . (2.45)

Of course, the resulting pattern on the screen is the same as in (2.43). However the
formula is obtained by tracing away the atom

IΨ(z) ∝ 〈z|(tratom |Ψ〉〈Ψ|)|z〉 (2.46)

where, by definition,

tratom(|Ψ〉〈Ψ|) = 〈0|Ψ〉〈Ψ|0〉+ 〈1|Ψ〉〈Ψ|1〉 = |ψ〉〈ψ| , (2.47)

so that, indeed IΨ(z) = Iψ(z).
Consider now a modification of the experiment where, whenever a photon [104]

is sent through the slits, a new atom in the state |0〉 is placed in the middle of slit B.
Suppose that the energy of the photon is such that it causes a transition |0〉 7→ |1〉
when it interacts with the atom. Thus the state of the photon and atom system is

|Φ〉 = 1√
2
|ψA〉 |0〉+ 1√

2
|ψB〉 |1〉 . (2.48)

The atom is now entangled with the path of the photon, and the resulting slit pattern
on the screen will be different. Indeed,

tratom |Φ〉〈Φ| =
1
2 |ψA〉〈ψA|+

1
2 |ψB〉〈ψB| , (2.49)

so that the intensity on the screen will be

IΦ(z) ∝ | 〈z|ψA〉 |2 + 〈z|ψB〉 |2 ∝ IA(z) + IB(z). (2.50)

Even though each photon is still in a superposition of going through either slit, the
interference fringes disappear. The entanglement between the path of the photon
and the state of the atom, together with the fact that the atom is not measured by
the screen, leads to the disappearance of interference effects. This allows to reason
as if each photon really went through one slit or the other.

Decoherence preserves the self-consistency of quantum mechanics. The photon
acts as if its position has been detected at one or the other slits, and this is necessary,



2.3 Decoherence 29

because one could decide to measure the atom to learn where the photon has been.
One could measure the atom any time after the interaction, or the atom itself could
be part of the measuring apparatus. This is seen as an example of the possibility of
consistently moving the Heisenberg cut between the quantum description and the
classical one.

Let us consider a slightly different scenario, in which the photon leaves the atom
in the state |α〉 = cosα |0〉+ sinα |1〉, resulting in the state

|Φα〉 = 1√
2
|ψA〉 |0〉+ 1√

2
|ψB〉 |α〉 . (2.51)

Then,

tratom |Φα〉〈Φα| =
1
2 |ψA〉〈ψA|+

1
2 |ψB〉〈ψB|+

1
2 cos(α)

(
|ψA〉〈ψB|+|ψB〉〈ψA|

)
. (2.52)

Thus we see that, as α changes from 0 to π/2, the off-diagonal entries in the reduced
state for the path gradually disappear. The interference effect is reduced only to
the extent that a measurement of the atom can give reliable which-way information
about the path of the photon. In this way, decoherence can be seen as a consequence
of information about a system leaking out into the world.

2.3.2 Inevitable environmental decoherence

In a real experiment, it is impossible to completely isolate the system under study
from the rest of the world. Since the experimental apparatus is at finite temperature,
there will be a thermal photon bath in the cavity, and since it is impossible to make
a perfect vacuum, there will always be some probability that the system collides
with some stray gas molecule. These interactions will lead to entanglement between
the system and the environment and lead to decoherence.

Say the system and environment are initially in the product state

|Ψt0〉 = 1√
2
(
|0〉+ |1〉

)
|ψ〉 , (2.53)

where |0〉 and |1〉 denote two different semi-classical states centred around two
different locations. The environment is affected differently depending on the position
of the particle and, at some later time t1, the total system is in the state

|Ψt1〉 = 1√
2
|0〉 |ψ0〉+ 1√

2
|1〉 |ψ1〉 . (2.54)

Experiments on the particle alone will be ruled by the reduced state

ρ = trE |Ψt1〉〈Ψt1 | =
1
2
(
|0〉〈0|+ |1〉〈1|+ ε |0〉〈1|+ ε∗ |1〉〈0|

)
, (2.55)

where ε = 〈ψ1|ψ0〉. The time-evolution of the reduced state ρ can be modelled in
various situations with the help of the master equation [218]:

d

dt

〈
x
∣∣ρ∣∣x′〉 = i

~
〈
x
∣∣ [ρ,H]

∣∣x′〉− Γ(x− x′)
〈
x
∣∣ρ∣∣x′〉 , (2.56)
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where the first term is just the Schrödinger evolution induced by the dynamics
of the particle alone, and the second term causes the off-diagonal terms to decay
exponentially in time. The function Γ determines the decoherence rate, and can be
modelled by

Γ(∆x) = γ

(
1− exp

[
−
(∆x

2a

)2])
, (2.57)

were γ > 0 is a constant localisation strength and a > 0 is a localisation length. The
precise values for these parameters have to be derived by modelling the interactions
of the particle with the particular environment. There are two different regimes,
known as long-wavelength (LW) and short-wavelength (SW) regimes, depending on
wether ∆x� 2a or ∆x� 2a. In the LW regime we have

ΓLW(∆x) ≈ γ (∆x)2

4a2 ≡ Λ(∆x)2, (2.58)

so that decay rate is proportional to the square of the distance in the superposition,
with some proportionality factor Λ. In contrast, in the SW regime, the decoherence
rate reaches a maximum

ΓSW(∆x) ≈ γ. (2.59)
This corresponds to regimes where a single interaction can completely localise the
particle.

In the experiments considered in this thesis, interactions with thermal photons
will lead to LW decoherence, as the average wavelength of a photon at 5 K is about
1 mm, which is much larger than the superposition sizes considered. Interactions
with gas molecules, on the other hand, will be in the SW regime, as the typical de
Broglie wavelength of a gas molecule will be smaller than the superposition size.

2.4 General probabilistic theories
We now broaden our horizons to consider a framework that generalises the operational
formulation of quantum theory. The main idea behind operationalism is that any
scientific theory should—at the very least—provide probabilistic predictions about
laboratory procedures. One might argue that a good theory scientific theory should
also provide an explanation, or a picture of what is going on in nature, and tell us
something about the world outside our laboratories, but a theory cannot be a good
scientific theory if it can’t tell us what happens in a given experiment.

This idea has led to the development of a few related mathematical frameworks,
most notably Generalised Probabilistic Theories (GPTs) [13], Operational Probabilis-
tic Theories (OPTs) [73], and Process Theories [68], and, more recently, Constructor
Theory [163]. These are frameworks in which the predictive content of different
physical theories can be formulated and compared. They are of great use in studying
the information-processing capabilities of different theories, in a similar way that,
say, linear algebra is useful in studying the formal properties of physical theories as
different as quantum mechanics and fluid dynamics: knowing that your theory is
a OPT with such and such properties allows you to immediately derive a host of
results. For example, as we will shortly see, in every GPT it is impossible to send a
signal without exchanging a system.
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These frameworks have been put to fruitful use in the programme of the recon-
struction of quantum mechanics, as we will see in section 3.1. Here instead, we
will provide a brief introduction to GPTs, which we will use in the next section
for a proof of the no-go theorem by Galley, Giacomini, and Selby [112] about the
non-classical nature of the gravitational field.

2.4.1 States, transformations and effects

Mathematically, a GPT system S consists of a convex set of states ΣS , a convex
set of transformations TS and a convex set of effects ES . In general there will be a
vector space VS associated with S, such that the states correspond to vectors, effects
to dual vectors and transformations to linear maps VS → VS . States, effects and
transformations are called processes.

Operationally, the states ΣS correspond to equivalence classes of preparations of
the system, the transformations TS correspond manipulations (including observations)
that can be done to the system without destroying it or losing it and effects ES
represent manipulations (including observations) after which the system is then
destroyed or simply ignored.

GPTs come with an expressive diagrammatic calculus in which systems are
represented by (labelled) wires

S (2.60)

and processes are represented by boxes with dangling wires

S

T

S

. (2.61)

In particular, states have no input wires and effects have no output wires:

S
σ

S

e
. (2.62)

The diagrammatic calculus becomes particularly useful when one starts considering
different systems and how they interact. Two GPT systems can be composed in
parallel by using the tensor product structure of the associated spaces. The resulting
system is then represented by wires side by side

S P . (2.63)

The multi-system diagrammatic calculus provides two related advantages over tradi-
tional “1D” formulas. First, a formal advantage, since it makes redundant a number
of equations relating parallel and sequential composition. For example, the property

(f2 ◦ f1)⊗ (g2 ◦ g1) = (f2 ⊗ g2) ◦ (f1 ⊗ g1) (2.64)
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becomes self-evident, as when building the diagrams corresponding to the left hand
side and the right hand side of the formula above, one obtains the same diagram,
namely,

f1

f2 g2

g1

. (2.65)

The second advantage is one of readability: when there are many systems interacting,
it can start to become difficult to read the formulas, while the diagrams remain
lucid.

2.4.2 Probabilistic interpretation

A diagram with no free dangling wires such as

σ

e

T (2.66)

corresponds to a scalar (a state in the trivial GPT system). By adding extra
conditions on a GPT, one can interpret every scalar as a probability. In some GPTs,
there is a distinguished effect, called the discard, represented as

, (2.67)

which represents ignoring the system from that point onwards. This allows to define
probabilities in the following way. Let us introduce the empty diagram

(2.68)

to represent the number 1. Then a set of states {σi} such that

σi

∑
i

= (2.69)

represents a preparation with a probabilistic outcome, where the label i serves to
identify the different possible outcomes. Then the probability of outcome i happening
is given by

σiP (i|{σi}) = . (2.70)

A normalised state, is one such that

=σ . (2.71)



2.4 General probabilistic theories 33

Similarly, an operation, also known as an instrument is a set of transformations {Ti}
such that

Ti
∑
i

= (2.72)

and the probability of the particular transformation Ti happening, given that the
system was in the state σ is

TiP (i|{Ti}, ρ) =

σ

(2.73)

The requirement of convexity is now understood as the requirement that, given
the experimental ability of preparing the state σ and the ability of preparing the
state σ′, one is also able to flip a biased coin and prepare the state σ with probability
p or σ′ with probability 1− p. This preparation then corresponds to the state

pσ + (1− p)σ′. (2.74)

2.4.3 Causality and the conservation of probabilities

As we have just seen, the discard is closely related to the idea that probabilities
always sum to 1. However, there is a close relation in GPTs between the conservation
of probabilities and notions of causality. Indeed, diagrams that only make use of
deterministic processes to propagate information, two processes can affect each other
only if there is a system connecting them. Moreover, the result of an operation
cannot be affected by the nature of a later operation. Let us see why.

A transformation T ′ on two systems A and B

T

A B

A B

(2.75)

is said to be non-signalling from A to B if

T

A B

=

A B

T ′

A A

(2.76)

for some T ′, meaning that if one ignores B after applying T , then one can compute
the resulting transformation on A without knowing the initial state of B. Put in
other words, the initial state of B does not affect the statistics of A via T . It is
immediate to prove that any transformation of the form:

σ

TBTA
T

A B
A B

A B

A B

S S′
= , (2.77)
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where TA, TB and σ are normalised, is non-signalling from A to B and from B to A.
Indeed

σ

TBTA
=T

σ

TA
= (2.78)

Note that this is quite a general statement. Indeed, σ could be a quantum entangled
state, or a state of a theory that allows even stronger correlations. The only
substantial requirement is that S and S′ are GPT systems.

Similarly, consider a diagram of the form

T2

T1

A B

(2.79)

where both T1 and T2 are normalised. Then to compute the effect on system B,
there is no need to know anything about T2, since

T2

T1

B

= T1

B

(2.80)

Thus, in GPTs, later operations do not affect the outcomes of earlier operations.
This property is also called no-signalling from the future.

There is a stark time-directionality in this formalism. GPTs are operational
theories, designed for reasoning about what happens in the lab. In most cases, one
is interested in predicting the results of the experiment, given the setups. Thus all
probabilities computed with GPTs are understood as prediction probabilities about
a set of events, given knowledge about events in their past. We will have more to
say about this in chapter 7.

2.4.4 Classical and non-classical systems

Quantum theory is a paradigmatic example of a GPT theory, with states as density
matrices, CPTP maps as transformations and taking the trace as the unique effect.

A suitable GPT model of a finite-dimensional classical system can be constructed
as follows. Let X be the finite set of configurations of the system. Then the states of
the GPT are the probability distributions over X, the transformations are stochastic
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maps on these distributions, and the only effect (the discard) is marginalisation.
The state space can be embedded in a |X|-dimensional real vector space VX , the
stochastic transformations are then represented by stochastic matrices and the
discard amounts to summing all entries in the vector. Classical systems may be
combined by making use of the tensor product of the underlying vector spaces.

The simplest nontrivial example of a classical system is the classical bit. It is
associated with the space X = {0, 1} and its state space is isomorphic to the line
segment [0, 1]. The simplest nontrivial quantum system is the qubit, whose state
space is isomorphic to a ball in 3D space.

Classical systems can be used to model measurements on non-classical systems.
Let M be a convex map from the states of A to states of a classical GPT system X,
and let σ be a state for system A, then

M

σ
A

X

(2.81)

is a probability distribution over X, which can represent the probability of various
outcomes of the measurement, as read on a classical pointer variable.

We can diagrammatically express what makes a system classical or not. For
example, all classical systems have a crucial property, namely, that the identity
operation can be decomposed as a sum of (or integral over) projectors:

=
∑
x∈X x

x

(2.82)

Thus, when computing probabilities about classical systems, one can use the classical
probability axiom

=
∑
x∈X x

x
P (b|a) =

a

b

a

b

=
∑
x∈X

P (b|x)P (x|a)=
∑
x∈X

x

x a

b
(2.83)

This can be taken as meaning that a classical system is always in one of its states,
and all probabilistic considerations are a result of ignorance. Or it can be taken to
say that classical systems can be measured without perturbing the state. Or yet
again, there are no interference effects in classical systems. Either way, this property
does not hold in a general GPT, and in particular, it does not hold in quantum
theory.

Another property shared by all classical systems is that of state separability. A
bipartite state is separable if it can be written as a convex combination of factored
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states:

ai bi

∑
i

pi (2.84)

All bipartite classical systems have separable states. This follows easily from the
defining property (2.82). Thus, if a GPT system has non-separable states, then the
system cannot be a classical system.

2.5 A no-go theorem about the gravitational field
We have now set up the machinery needed to understand the proof of the no-go
theorem by Galley, Giacomini, and Selby [112]. This theorem states that two systems
can never get entangled as a result of interacting via a classical system. It implies
that a positive result of the GME experiments is proof that the gravitational field is
not a classical system.

More specifically, assume that we have three systems A, B, and G, such that
G is a classical and that A and B interact only with G. That is, we can write the
evolution of the system as:

IA

IB

G BA

G

G BA

(2.85)

or as a sequence of such interactions. Then A and B cannot become entangled.
Indeed, assume that the three systems start in a separable state and use the defining
property (2.82) of a classical system to write

IA

IB

a g b

=
∑
x

IA

IB

a g b

x

x
=

∑
x

IA

a g

x

IB

bx

.

(2.86)
Then define

IA

a g

x

px = and IA

a g

x

= 1
pxax

. (2.87)
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Since IA, a and g are all normalised, we have
∑
x px = 1, and thus the ax are also

normalised states. Thus (2.86) already shows that A is not entangled with B and G.
To show that B and G are not entangled, we use again the defining property (2.82)
of classicality

IB

bx

=
∑
y

IB

bx

y

y

=
∑
y

py|x
y bxy

, (2.88)

where we have defined the probability distribution py|x and the normalised states
bxy in a manner analogous px and ax. Putting all together,

IA

IB

a g b

=
∑
x

px

ax

∑y py|x
y bxy

 . (2.89)

The equation above shows clearly that the result of such interactions mediated by
the classical system G leads to correlations, but not entanglement between A and B,
as the final state is separable. This will be true of a sequence of such interactions.
This completes the proof.

Thus, if we assume that the gravitational field can be represented by a GPT
system (meaning broadly that it has states and observables) and that two distant
systems only interact via the gravitational field, the observation of entanglement
in the GME experiments means that the gravitational field is showcasing some
non-classical behaviour. In particular, during the experiment it must be in a state
that does not obey (2.82), which is equivalent to the notion of having non-commuting
observables.

Thus, low energy quantum gravity experiments, aided by results of quantum
information theory, might afford us the first glimpse of the quantum nature of
gravity.
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Chapter 3

Quantum Foundations

Science offers the boldest
metaphysics of the age. It is a
thoroughly human construct, driven
by the faith that if we dream, press to
discover, explain, and dream again,
thereby plunging repeatedly into new
terrain, the world will somehow
come clearer and we will grasp the
true strangeness of the universe.
And the strangeness will all prove to
be connected, and make sense.

Edward O. Wilson [263]

We have seen how the study of quantum information theory has led to the
development of a number of tools that can be put to use in quantum gravity research.
It also stimulated a systematic study of the most counter-intuitive properties of
quantum systems. This is the objective of the field of quantum foundations: trying
to find the answers to Wheeler’s [261] question “How come the quantum?”

In this chapter, we review the reconstruction programme of quantum mechanics,
which seeks to re-derive the mathematical structure of the theory from physical
and operational axioms; we will look at the project of interpretations of quantum
mechanics, that seeks to build a coherent picture of the unobserved world; and finally
we will talk about the field of experimental metaphysics, a quantitative study of how
much quantum mechanics defies intuitive physical principles.

3.1 The idea of a reconstruction
When first presented with the mathematical structure of quantum theory, students
often think that it is rather abstract and seemingly arbitrary. It is not quite clear why
systems have to be represented by rays in Hilbert space, observables by hermitian
operators, and why the probabilities of various observations have to be computed
using the Born rule. We learn the rules and how to apply them, and so we might
forget how strange and arbitrary they appeared at first.
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Compare the situation with special relativity. Physicists eventually realised that
Maxwell’s equations were not invariant under Galilean transformations(

t
x

)
−→

(
t

x+ vt

)
(3.1)

but they were invariant under the Lorentz transformations(
t
x

)
−→ 1√

1− v2/c2

(
t+ xv/c2

x+ vt

)
. (3.2)

This formula, on its own, also appears quite arbitrary. Part of the success and
beauty of the theory of special relativity is that it manages to derive the formula for
the Lorentz transformation purely physical postulates. Namely,

1. There is no such thing as absolute velocity.
2. The speed of light is the same in every inertial frame of reference.

Although these postulates might be counterintuitive at first sight, they are com-
prehensible, and they are also verified by observation. They also seem dangerously
close to contradiction. Fitting them together in a coherent mathematical frame-
work resolves this tension and recovers the Lorentz transformation. The postulates
illuminate the transformation thanks to their physical nature.

Can the same be done for quantum theory? Is there a set of physically-inspired
postulates that allows to derive the Hilbert space structure and helps to understand
its physical significance? This are precisely the questions raised by Rovelli in 1996
[221], where he proposed a number of such postulates. But it wasn’t until 2001,
when Fuchs pleaded the community of quantum information theory [105], that the
first reconstruction was successfully achieved by Hardy [124]. Hardy’s reconstruction
has subsequently been refined, and a number of other original reconstructions have
appeared since [57, 74, 125, 132, 133, 146, 171, 187, 239]. In many reconstructions,
quantum theory differs from classical theory by a single axiom, which then formally
identifies what makes quantum special. Below, we will review two examples of
differing approaches.

Besides their mathematical and philosophical interest, reformulating quantum
theory in terms of physical postulates has another advantage: it suggests ways of
modifying quantum theory by relaxing or replacing one of the postulates. Thus
they could prove fruitful in the development of a new theory, if the task of finding a
theory of quantum gravity proves impossible. In this connection, we note that there
is a common feature of all reconstructions (with the notable exception of Jia’s [146]):
they are all time-oriented. So far, all fundamental theories of mechanics have been
time-symmetric, and it is possible that quantum gravity, too, will have its notion
of time-reversal symmetry. In chapter 7, we discuss the origin of this “operational”
arrow of time, and argue that it is not a necessary feature of quantum theory.

3.1.1 Is entanglement special?

The reconstruction by Masanes and Müller [171] is a refinement of Dakić and
Brukner’s [74], which is itself a refinement of Hardy’s original reconstruction [124].
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It is based on the GPT framework discussed in section 2.4 and thus assumes the
concepts of states, effects and transformations as primitives and seeks to fix the
mathematical structure of quantum theory from the properties of systems in these
prepare-and-measure scenarios.

The information carrying capacity of a system is the maximal number of perfectly
distinguishable states. A set of states {s1, . . . , sn} are perfectly distinguishable if
there is a measurement X with outcomes {xm} such that p(xm|sn) = δmn. A pure
state is a state that cannot be expressed as the convex combination of any other
two states. The postulates then are:

1. Finiteness. If a system carries one bit of information, then each state is
characterised by the outcome probabilities of a finite set of measurements.

2. Local tomography. The state of a composite system is fully characterised
by the statistics of measurements performed on the subsystems.

3. Equivalence of subspaces. Systems that carry the same amount of infor-
mation have isomorphic state spaces.

4. Symmetry. Any pure state can be reversibly transformed into any other pure
state.

5. All measurements are allowed. Every mathematically well defined effect
on a system carrying one bit corresponds to a possible measurement.

Some comments. The axioms 3, and 4 are crucial aspects of information. They
codify fungibility of information: a bit is a bit no matter what the physical em-
bodiment, and bits can be flipped, it does not matter which states we call 1 and
which state we call 0. Axioms 1 and 2 have to do with state estimation. Finiteness
says that state estimation is possible in practice, while local tomography is a form
of locality: no matter how strong the correlations between the different parts of a
system are, complete information about the whole system can still be recovered by
probing the parts separately and then bringing the results together.

Classical probability theory and quantum theory are the only two GPTs that
satisfy these 5 axioms. The authors remark that since classical probability theory is
embedded in quantum theory, quantum theory is the most general GPT that satisfies
the axioms. To single out quantum theory from the classical theory, one only needs
to modify the requirement 4, by asking that the transformation be continuous.

It might appear striking that what distinguishes quantum from classical is that
quantum requires a notion of continuity in its state space. This requirement can be
understood by thinking of the paradigmatic qubits: the polarisation of a photon or
the spin of an electron. These states are frame-dependent (observers in two different
frames will assign a different states to these systems) and different frames are related
by continuous transformations. The state of the paradigmatic classical bit is instead
frame-independent.

3.1.2 Information acquisition

The reconstruction by Höhn and Wever [132, 133] focuses on how information about
a system can evolve while interacting with it. Specifically, they imagine a system
O interacting repeatedly with another system S, where O is capable of storing and
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processing information about its interactions with S. They also assume that O
has developed a theoretical model (Q,Σ, T ) for its interactions with S. The set
Q = {Qi} is a catalogue of questions that it can ask S (interactions with discrete
outcomes), Σ is a set of states, or catalogues of knowledge, about S, each assigning
a probability yi for the question Qi to yield answer ‘yes’. T is a set of possible
evolutions for the states.

They then assume that O uses broadly Bayesian methodology to update the state
assigned to S, in light of the answers received from previous interactions with S. It
is assumed that there is a state of no knowledge, where yi = 1/2 for all questions.
Two questions Qi and Qj are deemed independent if asking Qi does not change yj ,
they are deemed complementary if yi = 1 automatically implies yj = 1/2. One can
then define an information measure I such that, given a maximal set of independent
questions {Qi}Di=1:

I : Σ −→ [0,+∞[

~y 7−→
D∑
i=1

α(yi)
(3.3)

where the numbers α(yi) ∈ [0, 1] quantify the information about every single question:
α(0) = 1 = α(1),

α(1/2) = 0.
(3.4)

The precise form of α is determined by the axioms. They also assume the existence
of an elementary system, one for which I(~y) ≤ 1.

By placing restrictions on the possible form of O’s model about a system SN
composed of N elementary systems, one can recover quantum mechanics of N qubits.
The restrictions are:

1. Limited information It is possible for O to acquire up to N independent
bits of information about SN .

2. Complementarity It is always possible for O to obtain N new independent
bits of information about SN .

3. Information preservation The total information O has about is constant
when SN does not interact with anything.

4. Time evolution O’s catalogue of knowledge about SN evolves continuously
with time between interrogations and every well defined evolution is possible
in practice.

5. Question unrestrictedness Every mathematically well-defined question can
be asked by O.

6. Tomographic locality O can determine the state of a composite system by
interrogating the N components separately.

Requirements 1 and 2 are quantitative versions of the postulates 1 and 2 initially
proposed by Rovelli in [221] and later by Zeilinger and Brukner [39, 271]. These
are the main difference between this reconstruction and the one above. In this
reconstruction, axioms 1-5 narrow down O’s theory to two alternatives: real and
complex quantum theory. Real quantum theory is embedded in complex quantum
theory by limiting measures of qubits on two complementary bases instead of 3.
Axiom 6 serves to distinguish from the two.
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3.2 The measurement problem
Thus far, reconstructions focussed on the relation one observer (or experimenter)
has with a quantum system. However, problems arise when one tries to mesh the
description of two observers interacting with a quantum system. The Wigner’s Friend
thought experiment [262], in which two different people seem to give a different
account of a series of physical events, is a stark illustration of the measurement
problem.

The measurement problem can be understood as the ostensible contradiction
between two main rules of quantum theory. One rule states that systems undergo
a continuous evolution in time described by a unitary transformation. The other
states that, upon measurement, the state of the system changes abruptly according
to the result of the measurement.

In the experiment, the friend owns at time t1 a qubit prepared in the state |+〉
and at time t2 measures it in the computational basis, obtaining either the result
|0〉 or |1〉. Wigner, who (after hopefully asking for consent) had placed his friend
and her whole lab in a sealed environment, gives a different account of the same
events. Wigner assigns a Hilbert space F to the system comprising of his friend
and her lab and assigns to it the pure state |ready〉 at time t1. Even though it
would be practically impossible to know the correct state, nothing stops Wigner
from assuming that such a state exists. Since the lab is sealed, Wigner assumes that
the lab and qubit system evolves unitarily according to:

|ready〉 |0〉 7−→ |zero〉 |0〉 ,
|ready〉 |1〉 7−→ |one〉 |1〉 .

(3.5)

Again, this evolution is impossible to compute in practice, but one can assume that
such an evolution occurs, and whatever the state |zero〉 actually is, it is a state
peaked around a semiclassical configuration in which the friend has seen the character
‘0’ appear on her lab equipment. Since the qubit starts in the complementary state
|+〉, Wigner deduces from the linearity of unitary evolution that the evolution of
the lab is t1 to t2 leads to

|ready〉 |+〉 7−→ 1√
2
|zero〉 |0〉+ 1√

2
|one〉 |1〉 . (3.6)

So, according to Wigner, not only the qubit is not in a definite state of the com-
putational basis, but the whole lab is now in a superposition! How can two people
give such contrasting accounts of the same events? Is there a way to decide if
either one is right? Can they both be right, or is quantum mechanics incomplete?
Finding a satisfactory solution to these questions is one of the tasks of the field of
the interpretations of quantum mechanics, which we discuss next.

Note first however that if Wigner is right because quantum mechanics can be
applied to all systems (including agents such as Wigner’s friend), then it would in
principle be possible to apply whatever unitary evolution lead to (3.6), and undo his
friend’s measurement. As we shall see in section 3.4.2, this has strong consequences
on our notions of reality.
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3.3 Different interpretations of QM
The search for an interpretation of quantum mechanics is an interdisciplinary effort
between physics and philosophy. It raises complex issues in philosophy of science.
For example, what are the requirements of a scientific theory, does it need to tell us
something about reality, or should we just accept that the best we can do is predict
the results of experiments? It also leads us to ask what it means for something
to ‘truly’ exist. Additionally, the unavoidable presence of probability carries the
question of the role of agency in formulating a scientific theory.

The search is completely ongoing, with many different contenders, often separated
in vocal “camps,” with little communication between camps [40, 185, 234, 245].
The situation is confounding because quantum theory is an extremely successful
scientific theory. It sustains the technological foundations of our society, and it is
used to formulate the most fundamental theory of physics, the standard model of
particle physics, which is by all accounts an unparalleled success in the programme
of reductionism.

Here we provide a brief (and partial!) overview of the field, by giving a short
description of various positions, glossing over many nuances. As we will see, every
solution comes at a price: each interpretation either leads to awesomely unfamiliar
concepts, or relies on non-mainstream philosophical stances, and sometimes both.

3.3.1 Copenhagen, or no-interpretation, approaches

One way of approaching the measurement problem is to argue there is no problem to
start with [107]. Quantum mechanics allows to predict with exquisite precision the
results of experiments. It’s a theory about ‘detector clicks’. The quantum state is
not a description of reality, but a summary of the information someone owns about
a system and a tool to compute probability of measurement outcomes. In this view,
the difference between Wigner’s account and his friends’ is just a consequence of
an asymmetry of information. Wigner’s friend knows more about the particle than
Wigner himself, and this is why Wigner’s state assignment differs from his friend’s.

This approach is certainly the most used in practice and it is perfectly adequate
for all practical purposes. However it amounts to a strong form of instrumentalism,
for it abandons the hope that our best scientific theory can tell us about the world
outside of our experimental interventions. Also, depending on how it is articulated,
it can introduce a form of dualism, between “quantum systems” about which nothing
can be said and the “macroscopic” world of people and detectors about which we
compute probabilities.

A criticism often raised is that, supposedly, people and detectors are themselves
made of atoms and thus should be amenable to a quantum mechanical description.
Indeed, actual detectors are designed using quantum mechanical knowledge. When
does a physical system stop being amenable to quantum mechanics and becomes a
measurement apparatus? Similarly, one is lead to ask about Wigner’s friend, and
if she could ever be in a superposition. Following the instrumentalist spirit of this
interpretation, one might answer that the problem is not well-posed: there is, in the
end, a well-defined sense in which we inhabit a world obeying mostly classical laws.
Wigner will never be able to do the experiments necessary to witness interference



3.3 Different interpretations of QM 44

effects of superpositions of agents. The friend has seen a definite result, and Wigner
is just ignorant of it. The next two interpretations provide opposite responses to
this question.

3.3.2 QBism

Quantum mechanics, according to the QBist, is the best tool to guide agents in
making decisions in our indeterministic world. Indeed, QBism [53, 108] holds that
quantum mechanics is an extension of probability theory and, as such, should not
be required to offer a picture of the world. This interpretation of QM is based on a
specific interpretation of probability theory [76, 233], namely, that all probabilities
are degrees of belief of a rational agents. Thus, the laws of quantum mechanics are
not physical laws that govern the behaviour of physical systems; they are “laws of
thought,” guidelines on how to best structure one’s beliefs based on previous beliefs
and sensory data.

QBism is deeply rooted in American pragmatism and places decision-making
agents at the centre of the world. Every single agent is welcome to start with their
own assumptions and to use quantum theory to guide the updating of their beliefs
in their decision-making process. QBists see the natural world as a stage where
agents interact with and describe each other quantum mechanically. To every action
taken by agent, the world responds with an unpredictable kick, which results in a
new experience for the agent and something truly new in the world.

While the strong emphasis on subjective experience and agency makes QBism
seem quite radical to many, the proponents raise an unobjectionable point: at the
present moment, there is no sound and agreed-upon foundation for probability theory.
The situation in the foundations of probability echoes that of quantum mechanics:
the interpretation or probability used in practice, the frequentist interpretation, is
not satisfactory. While it is true that we can use repeated experiments to learn about
probabilities (and we do that all the time), we cannot identify probabilities and
frequencies. This is because the frequency f of an outcome that has probability p only
approaches p with high probability [179]. QBism takes this problem seriously: it says
that we cannot understand quantum mechanics without understanding probability,
and uses one of the proposed foundations of probability, subjective or personalist
probability [233], as the foundation for interpreting quantum mechanics.

3.3.3 Relational quantum mechanics

Relational quantum mechanics (RQM) [221, 226] rejects instrumentalism. There is
no special class of systems called “measuring apparata” that transform quantum
possibilities in facts and conscious agents play no fundamental role. Quantum theory
applies to everything. RQM holds that reality is built of discrete relational quantum
events that can happen whenever any two systems interact.

It says reality has to be described relative to a given system, which serves as a
context in which things happen (quantum variables assume definite values). The
quantum state is seen as a computational tool used to compute the probability
of quantum events in a certain context, given other quantum events in that same
context. Any physical system can serve as a context in which variables take values.
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However, the value of a variable is a relative fact, labelled by the system that serves
as context.

RQM resolves the tension between the two rules of evolution (the continuous
unitary evolution and the collapse at the moment of measurement) by saying that
they are used to describe physics relative to different systems. When two systems A
and B interact, their state relative to a third system C that does not take part in
the interaction evolves continuously, while the state of A relative to B will update
discontinuously whenever the interaction takes place: whenever the value of one of
the variables of A takes a definite value relative to B.

In the Wigner’s friend thought experiment, the value of the qubit at time t2 is a
fact for the friend, but not for Wigner. But according to RQM, there is no need
for the friend to be a complex system, let alone sentient being, for the value of the
qubit to actualise: as long as a variable of the friend is affected by the qubit, the
qubit can take a value relative to the friend. And Wigner is not merely ignorant
of this value: the qubit has no value relative to Wigner yet. Indeed, were Wigner
to reason using classical logic as if he was just simply ignorant on the value of the
qubit, he will be mislead in ignoring possible interference effects.

Part IV of this thesis is dedicated to RQM. In chapter 8, we will see that the
failure of classical logic is understood as the result of ignoring the relational nature
of reality and the reason relationality remained hidden until the XXth century relies
on the uncontrolled interactions at our macroscopic scale, which “de-labels” facts
and stabilise them. In chapter 9 we will explore in detail some counterintuitive
consequences of the relativity of facts.

3.3.4 Everettian quantum mechanics

Everettian quantum mechanics (EQM) [254, 258] also holds that quantum mechanics
applies to everything. However it disagrees with the previous interpretations on
what the rules of quantum mechanics are. In particular EQM rejects the projection
postulate and holds that all quantum evolution is unitary evolution, and proposes
that one should understand the quantum state as a representation of the goings-on of
the universe. This move has astonishing consequences: EQM says that the quantum
state describes manifold, dynamically independent realities that keep multiplying
and diversifying as a result of quantum mechanical uncertainty and entanglement.

Branching happens whenever a quantum uncertainty affects the macroscopic
world. This happens not just as a result of laboratory experiments involving qubits
but around every unstable atom, as a result of gamma rays colliding in the upper
atmospheres of planets, and whenever classical chaotic dynamics amplifies quantum
uncertainty to macroscopic scales. Decoherence makes it so that whenever a large
enough system goes into a superposition of macroscopically different configurations,
the branches are effectively decoupled, creating new worlds.1 Note that most of the
causes of branching does not create an integer number of branches, but a continuous
amount of branches.

For example, the state of Wigner’s friend, her lab and the quantum qubit at
1Hence the other famous name for this interpretation: the Many Worlds Interpretation.
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time t2,
1√
2
|zero〉 |0〉+ 1√

2
|one〉 |1〉 , (3.7)

says that there are now two versions of the friend and her lab, one in which she
witnessed the qubit value 0 and one in which she saw 1. Because the dynamics
of the lab is enormously complex, it is incredibly hard for these two branches to
interact—to interfere, that is—and thus the two branches are effectively independent
of each other. As soon as Wigner removes the seal from his friend’s lab, the different
interactions with the two branches of the friend’s lab cause the nearby systems to
branch, and this branching gradually propagates to the rest of universe.

The mind boggles when considering the worldview proposed by this interpretation,
and this is continuously raised as a criticism of the theory. But it is crucial to
understand that this unfathomable number of multiplying realities is not a postulate
of EQM, but a consequence of its postulates. EQM only postulates that unitary
quantum mechanics applies to all systems, and that the quantum state describes a
state of affairs. As such, EQM is arguably quite frugal in its assumptions. It is also
important to note that EQM has two big advantages over most other interpretations:
it applies to all systems, and it naturally carries over to relativistic quantum field
theory.

Finally, another often-heard criticism with EQM is that, since the evolution is
deterministic and all alternatives happen in some branch, the theory cannot account
for the probabilisitic aspect of quantum experiments. This criticism is based on
initial uncertainty about this aspect of the theory, but it is now outdated, as the
problem has been solved and now there exists a complete account for the rules of
probability theory in relation to observed frequencies and decision theory [80, 120,
258]. Many of the problems in understanding probability in EQM are not problems
specific to EQM, but problems with the philosophy of science highlighted by the
strange context of EQM.

Interpreting the rules of quantum theory “on the nose” leads to unexpected and
foreign pictures of reality. This has prompted some scholars to propose that quantum
theory is incomplete and needs to be modified or supplemented with additional rules.
We now see two examples.

3.3.5 The pilot-wave theory

Also known as the de Broglie-Bohm theory or Bohmian mechanics [91, 118], this
interpretation posits that the quantum mechanical wavefunction is an incomplete
description of a system.

A system system of N particles is described by a complex-valued wavefunction
ψ(q1, · · · , qN ) ≡ ψ(q) on the space of configurations, as well as the actual values q̂n
of the positions of the particles. The wavefunction evolves unitarily according to the
Schrödinger equation while it guides the actual positions of the particles according
to:

dq̂n
dt

= ~
mn

∇nφ|(q̂1,··· ,q̂N ), (3.8)

where φ(q) is the phase of the wavefunction and ∇n is the gradient taken with
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respect to the coordinates of the nth particle. Notice that the velocity of a given
particle might depend on the actual positions of all the other particles involved.

According to this interpretation, systems evolve deterministically for all times.
Quantum uncertainty follows from the combination of the dynamics, classical igno-
rance of the actual positions, and the assumption of quantum equilibrium. The latter
says that, in an ensemble of systems prepared in the state ψ, the actual positions of
the particles are distributed in a (classically) random way described by the quantum
equilibrium measure:

ρ(q̂)dq̂ = |ψ(q̂)|2dq̂. (3.9)

The quantum equilibrium distribution is preserved by the dynamics, namely the
Schrödinger equation and the guiding equation (3.8), so that classical ignorance
about a system is preserved over time. The result of a measurement depends on the
actual position of the particle.

The pilot-wave model is appreciated as it describes a reality that is close enough
to classical intuition, where particles have positions and they get pushed around by
forces.2 However it has its drawbacks. Note that, like in EQM, the wavefunction of
the system never collapses and, as systems interact, the wavefunction becomes highly
entangled. While decoherence makes interference terms disappear and suppresses the
quantum effects from the guiding equation, the wave is still there. In particular, the
function ψ(q) will have support on vast regions of configuration space arbitrarily far
from the actual configuration of the system. There is no agreement at the moment
as to wether the wavefunction should be thought as part of reality, or merely as
a useful way to state the laws that govern the movement of the particles (i.e. on
whether it is ontic or nomological). Furthermore, the guiding equation for particle
n depends instantaneously on the actual positions of all the other particles. The
non-locality of dynamics is hidden by the randomness in quantum equilibrium, so
that no signal can reliably be sent faster than light. However, the non-local dynamics
is in tension with relativity theory as it picks out one preferred frame in which to
formulate the dynamics, and adapting Bohmian mechanics to quantum field theory
has not been successful yet.

One could in principle test the pilot-wave theory by finding systems out of
quantum equilibrium, which will consistently violate the statistics computed with
quantum theory (and possibly signal faster than light) [255].

3.3.6 Spontaneous collapse models

Another way to modify quantum theory is to posit an objective collapse mechanism
so that the wavefunction of every particle has a small chance to collapse to a well
defined state. There are several different models that differ on the basis of collapse
(energy, momentum, basis), and the mechanism of collapse (irreducible or induced
by interactions with an unknown field). But besides these details, the spontaneous
collapse models all have similar features. A limpid and recent review is provided by
Bassi et. al. in [15]. Here we provide a short overview of the Ghirardi-Rimini-Weber

2There is a way to formulate pilot-wave model in which particles obey Newton’s second law,
modified by the addition of a nonlocal quantum potential.
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(GRW) model, which is the first model proposed, and perhaps the most well-known,
as well as the Penrose-Diósi proposal for gravitationally-induced collapse.

GRW

In this model, the wavefunction ψt(q1, · · · , qN ) ≡ ψt(q) of N particles evolves in
time t according to the Schrödinger equation—most of the time. In any interval of
time dt, each of the N particles has a probability λGRMdt of spontaneously localising.
When nth particle localises, the wavefunction instantaneously changes according to

ψt 7−→
Ln(x)[ψt]
‖Ln(x)[ψt]‖

, (3.10)

where Ln(x) is a linear operator whose action is defined by

Ln(x)[ψ](q) = ψ(q)e−
1
2 (x−qn)/r2

C . (3.11)

The operator Ln(x) exponentially suppresses the parts of the wavefunction which
have support on values of qn far from the position x. Thus, in the new wavefunction,
the particle n is localised within an area a few rC of diameter. The value of x itself
is randomly chosen and its probability density is given by

p(x|n, t) = ‖Ln(x)[ψt]‖2. (3.12)

In this model, there are no point particles. The wavefunction is used to instead
to compute the mass distribution associated with each particle. One can compute a
density of mass for particle 1 at time t according to:

ρnt (q1) = mn

∫
d3q2 · · · d3qN |ψt(q)|2, (3.13)

and similarly for the other particles. When a particle goes into an interferometer it
really goes through both slits.

GRW has two free parameters, the rate of localisation λGRW and the localisation
precision rC. Standard values are

λGRW = 10−16 s−1, rC = 10−7 m. (3.14)

The rate of localisation of each particle is extremely low but, since the localisation
of each particle is independent, the rate of collapse grows linearly in the number of
particles N and NλGRW � 1 s−1 for systems with a macroscopic number of particles.
The Wigner friend thought experiment is resolved by saying that the state of the
friend and the lab collapses extremely rapidly to one of the two branches. These
values place the detection of spontaneous collapse just out of current technological
capabilities, but the hope of the programme is to actually detect the consequences
of this effect. If it becomes impossible to perform interferometric experiments with
systems above a certain mass, even when accounting for all the standard sources
of environmental decoherence, then this will be a clear signal that some form of
spontaneous collapse is at play.
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Penrose-Diósi gravitational collapse

The Penrose-Diósi model is a parameter-free version of spontaneous collapse. The
model is of particular interest for us because it is motivated by the assumption that
the gravitational field is a classical entity, incapable of being in a superposition.
When the tension between the quantum superposition becomes “gravitationally” too
large, the state collapses rapidly in a position-defined state.

A natural “gravitational” measure for the size of the superposition can be
computed as follows. Suppose a system of mass m and mass density ρ is in a
superposition of two states separated by d. Then one might estimate the size of the
superposition by

∆EG = 8πG
∣∣∣∣∫ d3q

∫
d3q′ ρ(q)ρ(q′)− ρ(q′ − d)

|q − q′|

∣∣∣∣ , (3.15)

the absolute value of the difference between the self-energy of a mass distribution
ρ(q) and the interaction energy between this mass distribution and one displaced by
d. Then the expected decay rate λPD for this superposition is:

λPD = ∆EG
~

. (3.16)

This parameter-free model has been recently falsified by underground experiments
at Gran Sasso [donadi2021underground]. The spontaneous collapse results in
stochastic motion, which in turn emits EM radiation, and results in heating. This
is true for any state of matter, not just superpositions. The experiment in Gran
Sasso attempted to measure this heat production of a germanium crystal, and the
measured values ruled out the model with high confidence. There are other proposals
for models of spontaneous collapse caused by a classical gravitational field [15].
All these models would be ruled out by the detection of gravitationally-mediated
entanglement.

3.4 Experimental metaphysics
This proliferation of interpretations might seem to some an idle endeavour. Some
theories are modifications of QM that have consequences that are, in principle,
observable; but most of the interpretations are designed to give the exact same
predictions as QM, so there seems to be no hope to distinguish them. Is this all
useless metaphysics then? Not necessarily. The various interpretations offer different
ways of thinking about the same set of observations. As Feynman was fond of
pointing out, it is good to have different theoretical representations of the same
physics, as we don’t know which way of thinking will turn out to be most useful
when we need to change the laws.

Surprisingly, there are experimental ways of constraining the various interpre-
tations. By studying the logical structure of different kinds of theories, one can
formulate general statements about which classes of theories are compatible with
observations. These often quantitative results are the main output of the field of
experimental metaphysics [48, 50]. The most celebrated are of course Bell’s two
theorems [16, 19]. Other notorious results include the Kochen-Specker theorem
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[148], Cirel’son’s bound [64], the PBR theorem [213], and the Local Friendliness
inequalities [32]. The development of such no-go theorems is one of the tools of
quantum foundations research and they lead to clarifications of certain obscure
aspects of the quantum, as well as practical applications.

Here, we will review Bell’s second theorem [19, 20] that shows that quantum
physics contains a form of irreducible non-locality and characterises what is special
about entanglement. We will also review the recent no-go theorem about the
absoluteness of events in quantum physics by Bong et. al. [32].

3.4.1 Bell

Bell’s 1976 theorem puts quantum theory in strong tension with the intuitive notion
named local causality, namely, the idea that correlations between two spacelike
separated events are to be explained in terms of events that happened in their
common past. This condition implies quite general constraints on the strength
of statistical correlations of random variables that share a common cause. These
constraints are formulated in terms of inequalities, known as Bell inequalities. Not
only does quantum theory predict the violations of these inequalities, the inequalities
are routinely violated in quantum labs all over the world.

Figure 3.1. Spacetime view of the Bell setup.

In the Bell setup, one considers the correlations of variables A and B observed
at two spacelike separated spacetime regions and how these correlations depend on
the values of other variables X, Y and C, where C is in the causal past of both
A and B, X is in the causal past of A but not B, and the opposite is true for Y .
The situation is displayed in figure 3.1. X and Y are assumed to be freely chosen,
meaning that they are not correlated with anything outside their future light-cone.
Let the numbers

f(abxy) (3.17)

describe the observed frequencies of the various outcomes, where we denote by a
a specific value of A and similarly for the other variables. We are interested in
the correlations between A and B for different values of X and Y , that is, in the
distribution

f(ab|xy). (3.18)
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Now, by the principle of local causality, there should be some C in the past of both
A and B that explains the correlations, namely, such that

f(ab|xy) =
∑
c

f(ab|cxy)f(c|xy) =
∑
c

f(a|xyc)f(b|xyc)f(c|xy). (3.19)

Note that the first equality is trivial, while the second equality is the expression of
the principle of local causality. Since X and Y are freely chosen, we also have the
simplifications

f(a|xyc) = f(a|xc), (3.20)
f(b|xyc) = f(b|yc), (3.21)
f(c|xy) = f(c), (3.22)

so that, finally
f(ab|xy) =

∑
c

f(a|xc)f(b|yc)f(c). (3.23)

The formula above has been derived assuming only the principles of local causality
and free choice and applying them to the situation in figure 3.1. It relies on no
particular assumption about the physical interpretation of the variables A,B,C,X,
and Y other than they take values in the respective spacetime region.

Equation(3.23) imposes constraints on the correlations between A and B. For
example, if we assume that A and B can only take the values3 −1 and 1, then the
numbers

C(x, y) =
∑
ab

ab · f(ab|xy), (3.24)

which quantify the correlations between A and B for different values of X and Y ,
can be shown to obey the following inequality,

S ≡
∣∣C(x0, y0) + C(x0, y1) + C(x1, y0)− C(x1, y1)

∣∣ ≤ 2, (3.25)

where x0 and x1 are any two values of X, and y0 and y2 any two values of Y . This
is known as the Clauser, Horne, Shimony, and Holt (CHSH) inequality [65].

Now, it is well-known that there are quantum systems that violate the above
inequality. Spin measurements on the singlet state

|ψ〉 = 1√
2
|↑↓〉 − 1√

2
|↓↑〉 , (3.26)

where X and Y select the axis of spin measurement of each particle, and A,B = ±1
depending if the result is ‘up’ or ‘down’ can achieve, for appropriate choices of
measurement axes allow a maximal value of

S = 2
√

2. (3.27)

Thus quantum theory—as well as observational data [7, 117, 128]—is incompatible
with the notions of local causality and free-choice. Every interpretation has to make
sense of this fact.

3Note that this can always be done by coarse-graining the observations in two different regions.
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One way to tackle this interpretational problem, as argued in the excellent review
[264], is to break down local causality in two ideas. First, the idea of relativistic
causality, namely, that the causes of an event are to be found in its past lightcone.
Second, Reichenbach’s principle of decorrelating explanation, which states that a
correlation between A and B is explained by a variable C if conditioning on C
removes the correlation. Relativistic causality together with Reichenbach’s principle
imply local causality, thus rejecting one or the other is a way to reconcile one’s
picture of the world with observations. Both options are quite radical. Abandoning
relativistic causality so that (3.20) fails, is in stark conflict with the spirit of special
relativity. This is the way taken by pilot wave theory, spontaneous collapse models,
and some readings of the no-interpretation interpretation, for example. There are
general results about the fine-tuning required so that models that change the causal
structure of these Bell-type experiment do not lead to superluminal signalling [49,
266]. Other approaches, including other flavours of the no-interpretation position,
take the violation of the Bell inequalities as a failure of Reichenbach’s principle.
However, it is not quite clear what should replace it [51, 158].

One might object to some more basic premise of Bell’s proof. For example,
one might say that the simplification (3.22) is unwarranted, as there might be a
common cause to the outcomes of X, Y , and C, so that they are not actually
independent. This idea is often called superdeterminism and has serious proponents
[1, 138]. However, it is an empirical fact that one can set up three random number
generators that display no correlations. The existence of their common cause would
only show up when these random variables are used in Bell-type experiments. This
approach indeed faces the same fine-tuning problem as rejecting relativistic causality
[49, 266].

Another way out is to reject the premise that it makes sense to speak of variables
taking values in given spacetime regions, without conditioning this statement on
anything else. This is called rejecting macroreality, or the absoluteness of observed
events. QBism, relational quantum mechanics (RQM), and Everettian quantum
theory all do this, in different ways. Indeed, QBism and RQM both say that it
does not make sense to describe the experiment in such absolute terms. No agent
(for QBism) or single system (RQM) can experience two spacelike separated events,
instead, they would have to wait for the result of both experiments to arrive in the
same spacetime region, at which point the correlations are not in conflict with local
causality [108, 169]. However, in both interpretations there is a sense in which all
observers inhabit an emergent macroreality, and this macroreality is still in violation
of local causality, so these interpretations might still need to reject Reichenbach’s
principle, suitably reformulated. The issue is still not completely resolved [50, 204].
In contrast, EQM is compatible with variables taking values at specific spacetime
locations, but they do not take single values. The apparata measuring the spins will
go into a superposition, and there will be local branching. When the signal from
one apparatus reaches (in a superposition) the other apparatus, there is branching
again. This allows for a completely local description of events; see [35, 81, 258].
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3.4.2 Bong et. al.
Rejecting the existence of a fundamental macroreality may seem an extravagant way
out of Bell’s theorem. However, it is a more natural option to respond to Bong et.
al.’s recent no-go theorem [32], which pitches macroreality, no-superdeterminism,
locality and quantum mechanics against each other.

Figure 3.2. Spacetime view of the extended Wigner’s friend setup.

The setup is an extension of the Wigner’s friend thought experiment, see figure
3.2. In this case we have two “Wigners”—Alice and Bob—who each has their own
friend in a sealed lab—Charlie and Debbie, respectively. The procedure is as follows.
Charlie and Debbie each measure a quantum system in their lab, the results are
the random variables C and D. We assume that the systems are always prepared
in the same way, and the measurements are performed on the same basis for all
trials. Then, Alice and Bob sample the random variables X and Y . If X = 1, Alice
simply asks Charlie what the result of the experiment was and sets A to whatever
Charlies says, otherwise she performs another kind of experiment and selects A this
way. Similarly for Bob, Debbie, Y and B.

We are again interested on putting bounds on the correlations of A,B,X, and
Y , that is, on the frequencies

f(ab|xy). (3.28)
However, if we also assume that C and D take definite values, we postulate that
there exists a distribution

f̃(abcd|xy) (3.29)
that accounts for f in the sense that

f(ab|xy) =
∑
c,d

f(abcd|xy). (3.30)

Additionally, since Alice sets A to whatever value Charlie says when X = 1 (and
similarly for Bob), we require also

f̃(a|cd, x = 1, y) = δa,c and f̃(b|cd, x, y = 1) = δb,d. (3.31)

These last three equations follow from the assumption of macroreality, or absoluteness
of observed events: it makes sense to think of the values of C and D, observed by
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Charlie and Debbie, as existing regardless of what Alice and Bob choose to do. We
then assume no superdeterminism, meaning that it is possible to pick X and Y so
as to be independent of C and D,

f̃(cd|xy) = f(cd). (3.32)

We also assume locality, so that A cannot depend on Y and B cannot depend on X,
even when accounting for the unseen values of C and D:

f̃(a|cdxy) = f̃(a|cdx) (3.33)
f̃(b|cdxy) = f̃(b|cdy) (3.34)

These equations for f̃ imply constraints on f and on the correlations between A and
B. These constraints are known as the Local Friendliness (LF) inequalities. Local
friendliness is the conjunction of macroreality, no-superdeterminism, and locality.

Bong et. al. showed that, if one assumes that quantum theory can be applied to all
systems, including experimenters such as Charlie and Debbie, then the LF inequalities
can be violated. The quantum experiments that violate the LF inequalities require
Charlie and Debbie to each own one part of a bipartite entangled system. They also
require that Alice and Bob are capable of rewinding the evolution in their friend’s
lab when X or Y 6= 1. In that case they then perform measurements directly on
their friend’s entangled system, measurements that are complementary to those that
their friends performed.

Contrary to Bell’s inequality, the violation of the LF inequality has not been
established to the satisfaction of the community yet. Experiments violating LF
inequalities have been performed [32, 212] with the spatial mode of a photon acting
as Charlie or Debbie. Since we are used to having photons in superpositions of
spatial modes, most physicists doubt that these are instances of bona fide violations
of the LF inequalities. On the other hand, performing the experiment with a human
might remain forever out of reach. However, with advances in quantum control of
matter, the experiments will be performed with more and more complex systems
acting as “friends.” A day might come when intelligent computer programmes acting
as agents running on quantum computers will be put in such superpositions.

Perhaps quantum mechanics fails at some scale and, once a system reaches a
certain level of complexity it does not obey quantum physics any longer. If quantum
mechanics is universal however, the theorem implies that the world does not allow
for local friendliness. Given the empirical success of quantum theory, one ought to
take the consequences of the theorem seriously.

Interpretations that already accepted superdeterminism or let go of relativistic
causality, escape the Bong et. al. theorem the same way (relativistic causality
implies locality). However, now it’s not enough to reject Reichenbach’s principle. So
the no-interpretation approaches have to find another solution, either rejecting one
of the three assumptions, or admit that quantum mechanics cannot be applied to
observers. QBism, RQM and EQM all reject the existence of observer-independent
facts.
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Part II

Low Energy Quantum Gravity
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Chapter 4

Quantum optics simulation of a
quantum gravity experiment

Quantum gravity predicts that two masses in a superposition of position will become
entangled as a consequence of gravitational interaction. This effect could be created
in “low energy” experiments that may be realised in the near term. Detection of
gravitationally mediated entanglement (GME) would be the first direct observation
of a quantum gravity prediction. What’s more, GME cannot happen if gravity is
mediated by a classical system [112] (see section 2.5). Given that to date we have
zero experimental evidence for quantum gravitational phenomena, this experiment
is thus of immense interest for basic research in physics. It showcases the usefulness
of quantum information techniques in quantum gravity explorations and opens a
novel avenue for quantum gravity phenomenology.

As a preparation to the anticipated actual experimental realisation, it is crucial to
clarify the implications of possible experimental outcomes and discuss experimental
techniques. Quantum simulators [99, 114, 123], quantum systems that can be
manipulated to mimic the dynamics of harder to control quantum systems, provide
powerful tools for this purpose. The advantage of a quantum simulation over a
classical computer simulation is that it allows to verify and highlight the fundamental
physical principles that underlies the effect under investigation.

In this chapter, we present two quantum logic simulators of the GME experiment
and their implementation using photonic degrees of freedom. The experimental
implementation of the simulators is still undergoing, as there were important delays
caused by the pandemic, but we report results from one of the simulators [210]. The
simulators can be used as a test to show how to certify the non-classicality of the
field given realistic levels of noise, by using an entanglement witness and/or the
violation of Bell’s inequalities. One of the simulators is also able to replicate the
effects of collapse models by introducing decoherence to the system. In this case,
state tomography can be employed to verify the absence of entanglement.

Quantum simulation can be performed through different physical systems, such
as superconductive systems [139], nuclear magnetic resonance (NMR) quantum
processors [90], trapped ions [29] and photons [9]. A preliminary simulation of GME
appeared in [25], which uses nuclear magnetic resonance. The simulation we propose
is closer to the actual physics of the GME experiment.
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Figure 4.1. Sketch of the simulated experimental setup as proposed in [34].
Two masses are set in path-dependent superposition and get entangled as a result of
gravitational interaction. See section 1.4.1 for a longer description.

4.1 The GME experiment
Let us briefly recall the implementation proposed in [34], and discussed in more detail
section 1.4.1. The experiment features two adjacent interferometers, each travelled by
a mass, and consists of five stages; see Figure 4.1. During the Preparation stage, two
nanodiamonds of mass m with embedded magnetic spin-1

2 oriented along the x-axis,
are released from a magnetic trap. In the Superposition stage a series of EM pulses
modifies the position of the masses depending on z-component of the embedded
spin, resulting in each mass being in a spin-dependent path superposition, at rest at
a distance l/2 from their initial position. During the Free Fall stage, the masses are
in free fall for a time t. In the Recombination stage, another series of EM pulses
undoes the path superposition. The particles are collected during the Measurement
stage and a spin measurement is applied. Repeated runs of the experiment allow to
certify the presence of entanglement by studying the spin correlations. The setup is
such that electromagnetic interactions between the masses are negligible compared
to the gravitational interaction, so that if entanglement is present, it was mediated
by gravity. We now proceed to identify the relevant degrees of freedom and their
physical meaning.

The GME can be understood as a consequence of a macroscopic superposition
of geometries, as already argued by [62, 63], see also section 1.4.1. Let us write
|gXY 〉 = |XY 〉 |hXY 〉, where X and Y denote the positions of the masses (C, L, or
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R) and |hXY 〉 denotes the state of the metric perturbation field peaked around the
corresponding classical solution. Then |gXY 〉 is the state of the spacetime degrees of
freedom of the system. The evolution of the state of the system after each stage is:

|ψ〉P =
(
|↑〉+ |↓〉

)
⊗
(
|↑〉+ |↓〉

)
⊗ |gCC〉 (4.1)

|ψ〉S = |↑↑〉 |gLR〉+ |↑↓〉 |gLL〉+ |↓↑〉 |gRR〉+ |↓↓〉 |gRL〉 (4.2)

|ψ〉FF = eiφLR |↑↑〉 |gLR〉+ eiφLL |↑↓〉 |gLL〉+ eiφRR |↓↑〉 |gRR〉+ eiφRL |↓↓〉 |gRL〉
(4.3)

|ψ〉R =
(
eiφLR |↑↑〉+ eiφLL |↑↓〉+ eiφRR |↓↑〉+ eiφRL |↓↓〉

)
⊗ |gCC〉 . (4.4)

During the Free Fall stage, the geometry of each quantum branch is well approximated
by a static configuration of two masses held at a fixed distance [54]. In each branch,
the geometry is in a coherent state peaked on a macroscopic (classical) geometry.
The four different positions of the masses in the superposition correspond to four
diffeomorphically inequivalent static states of the geometry. Thus, the position and
spins of the masses are entangled with the spacetime geometry.

This analysis highlights that the creation of entanglement between the spins is a
consequence of the geometry itself being in a superposition during the experiment.
It also makes clear that we only need a low-dimensional Hilbert space to model the
coherent states of the gravitational field that are relevant during the experiment.
In fact, we can simulate the gravitational field with a two qubit space. The spin
degrees of freedom will require another two qubits.

For the rest of the work, we take the approximation l � d, so we take into
account only the phase generated on the branch of closest approach, |RL〉. This is
not likely to be the case in the actual experiment, but it simplifies the simulation
without harming the logic of the experiment. We thus take

φLL = φRR = φLR = 0, (4.5)

and write φ = φRL.
Thus, the state of the spins at the moment of measurement will be

|ψ〉M = |↑↑〉+ |↑↓〉+ |↓↑〉+ eiφ |↓↓〉 . (4.6)
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4.2 Quantum simulators
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Figure 4.2. Quantum circuits for simulators. The two proposed simulators are
presented here in circuit diagram form. In both cases, two qubits represent the spin
degrees of freedom, while two qubits represent the geometry. The Quantum Circuit (QC)
Simulator. top, is meant to simulate low energy quantum gravity. In the Post Selection
Quantum Circuit (PSQC) Simulator, bottom, operating on the geometry qubits and
post-selecting allows to additionally simulate the effects of decoherence.

We now map the experiment on a quantum circuit. We model the system of the
two spins and the geometry as a 16-dimensional system. Each embedded spin is
simulated with a qubit, while the geometry degrees of freedom with two qubits, a
ququart. We write vectors as belonging to the following total Hilbert space:

C2 ⊗ C4 ⊗ C2 = HspinA ⊗Hgeometry ⊗HspinB . (4.7)

What allows us to model the geometry degrees of freedom with a finite dimensional
Hilbert space is that in the five stages of the experiment, only a few states of the
geometry come into play so that a digital quantum simulation is able to capture the
essence of the process.
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4.2.1 Quantum Circuit simulator

The Quantum Circuit (QC) Simulator of (see top of figure 4.2) is a straightforward
representation of the dynamics of the GME experiment.1 The guiding principle is to
recognise that the state of the geometry after the superposition stage (1.18) depends
entirely on the state of the spins: the state of the spin is “written” in the geometry.
Two qubits represent the spin degrees of freedom of the nanodiamond. A ququart
(two qubits) are assigned to the geometry as four coherent states of the geometry
are relevant.

In the Preparation stage, Hadamard H gates are applied to the spin qubits to
set them in the state |+〉 = |0〉 + |1〉, corresponding to the spin in the positive
x-direction. The full state of the system at the end of the Preparation stage is

|+〉 |00〉 |+〉 . (4.8)

In the Superposition stage the two CNOT gates entangle the ququart with the spins,
sending the above state into:

|0000〉+ |0011〉+ |1100〉+ |1111〉 . (4.9)

The Control Phase gate mimics the Free Fall stage, adding a relative phase only to
the branch where the gravitational ququart is in the state |11〉:

|0000〉+ |0011〉+ |1100〉+ eiφ |1111〉 . (4.10)

Finally, in the Recombination stage, the CNOT gates are applied again, disentangling
the geometry ququart from the spin qubits:

|0000〉+ |0001〉+ |1000〉+ eiφ |1001〉 , (4.11)

so that the state of the spin qubits is

|00〉+ |01〉+ |10〉+ eiφ |11〉 . (4.12)

There is a faithful mapping between (4.1) to (4.6) and (4.8) to (4.12). The second
and third qubits represent the geometry ququart, and the remaining two the spin
qubits. For instance in Eq.(4.10) we have: |0000〉 ↔ |↑↑〉 |gLR〉, |0011〉 ↔ |↑↓〉 |gLL〉,
|1100〉 ↔ |↓↑〉 |gRR〉 and |1111〉 ↔ |↓↓〉 |gRL〉.

4.2.2 Post Selection Quantum Circuit simulator

In the second simulator (figure 4.2 bottom), we apply single-qubit gates on the
geometry ququart after the free fall phase and measure them, keeping the results only
if a certain outcome is achieved. If the geometry ququart is projected on the |++〉
state, then the state of the spin qubits is (4.12), thus obtaining the final result of
the previous simulator. Additionally, the photonic implementation of this simulator
will allow us to simulate the effects of decoherence.

1This quantum circuit also appeared in [25], although it was not implemented.
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4.2.3 Simulating gravitationally induced decoherence

As we mentioned in section 3.3, there is a breadth of spontaneous collapse models [15].
While these models differ in their motivations, mechanisms and in some quantitative
details, they produce the same qualitative effect: a multi-particle system in a centre
of mass superposition does not retain coherence for macroscopic timescales; the
superposition becomes a classical mixture. One of the motivations of these models
is to prevent macroscopic superpositions (thus solving the measurement problem
beyond explaining why interference effects become negligible, which is already
explained by decoherence). Even though most of these models contain at least one
free parameter that determines the rate of collapse, they all expect a particle this
size to collapse rapidly and thus GME should not take place. Detecting GME will
render these models implausible.

Phenomenologically, the spontaneous collapse acts as a dephasing channel in
the position eigenbasis. That is, if a particle starts off in a superposition described
by the state |ψ〉 = (|x1〉 + |x2〉)/

√
2, after a certain time, its state undergoes a

transformation:
ρ = 1

2

(
1 1
1 1

)
7−→ 1

2

(
1 e−γ

e−γ 1

)
, (4.13)

where γ will be some model-dependent positive number that depends on the compo-
sition and geometry of the system, the size of the superposition, and the elapsed
time.

In the experiment, each of the two masses would be independently undergoing
spontaneous collapse. The spins start in a pure state, but since they become
entangled with the position of the masses, when the system collapses on the position
basis, the spins also collapse. Thus, the spins would not be in the state of equation
(4.12),

1
4


1 1 1 e−iφ

1 1 1 e−iφ

1 1 1 e−iφ

eiφ eiφ eiφ 1

 (4.14)

Instead, they will be in the state partially mixed state

1
4


1 e−γ e−γ e−2γ−iφ

e−γ 1 e−2γ e−γ−iφ

e−γ e−2γ 1 e−γ−iφ

e−2γ+iφ e−γ+iφ e−γ+iφ 1

 . (4.15)

Thus, provided all known sources of decoherence are taken into account, the experi-
ment can also in principle be used to detect spontaneous collapse.

In the PSQC simulator, if we do not postselect on the basis of the measurement
on the geometry ququart, the state of the spin qubits at the moment of measurement
will be

ρmix = 1
4
(
|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11|

)
(4.16)

This simulates the effect of complete decoherence. To simulate only partial deco-
herence and obtain the state (4.15), we apply dephasing channels on the geometry
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qubits before the post-selection. The action of a single-qubit dephasing channel is:

Dγ : |i〉〈j| 7−→ e−γ(1−δij) |i〉〈j| (4.17)

and thus
Dγ ⊗Dγ : |im〉〈jn| 7−→ e−γ(1−δij−δmn) |im〉〈jn| . (4.18)

4.2.4 Entanglement certification

Measuring an entanglement witness and violating a Bell inequality are two ways
to certify the presence of entanglement. The entanglement witness requires fewer
measurements and can certify entanglement in states that are not capable of violating
the Bell inequalities. Violations of the Bell inequalities, on the other hand, is a
device independent way of certifying the presence of entanglement, meaning that if a
violation is measured, one can conclude the presence of entanglement with minimal
assumptions about the functioning of the apparatus.

In the following, we measure the witness proposed in the original paper [34],
which, in our setup, is

WB = 1− 〈σx ⊗ σz〉 − 〈σy ⊗ σy〉. (4.19)

For the final state of the simulators (4.12), it yields WB = cosφ. We also violate
the CHSH inequality by measuring σx and σz on one spin qubit and (σx + σz)/2
and (σx − σz)/2 on the other.

Demonstrating that no entanglement is present is harder. We intend to do this
by performing quantum state tomography [144], thus reconstructing the quantum
state.

4.3 Photonic implementation of the simulators
Having specified the abstract structure of the two simulators, we now describe their
proposed implementation.

4.3.1 Photonic implementation of the Quantum Circuit simulator

The implementation of the QC simulator is shown in Fig. 4.3. Two photons carry
the four logical qubits. The polarisation of each photon carries a spin qubit of the
simulator, while the path degree of freedom carries the geometry ququart. The initial
and final entangling gates, acting on path and polarisation of single photons, are
realised by polarising beam splitters. The Control Phase gate acting on the paths
of the photons is realised by a probabilistic scheme exploiting bosonic interference
[186]. This will only induce a φ = π phase. We are also investigating the possibility
to implement the tunable control phase gate reported in [249] in order to simulate
various amounts of free-fall times [75].
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Figure 4.3. Two Photon Implementation of the Quantum Circuit Simulator
(QC). The spin qubits of the simulator are encoded in the polarisation degrees of
freedom of the two photons, while the geometry degrees of freedom are encoded in their
paths. The two photons are independently prepared in a superposition of horizontal
and vertical polarisation and go through a polarising beam splitter, which completely
entangles the path of each photon with its polarisation. The Control Phase gate is
implemented thanks to bosonic interference due to the indistinguishability of the photons.
Two half-waveplates momentarily make the polarisation of all paths equal in order to
allow the realisation of the control-Phase gate on this degree of freedom. Finally, the
qubit state is restored by two other half-waveplates and the paths are recombined by final
polarising beam splitters that disentangles path and polarisation of the two photons.

4.3.2 Photonic implementation of Post Selection Quantum Circuit
simulator

The implementation of the PSQC simulator is shown in Fig. 4.4. In this case,
the four logical qubits are carried by the polarisation degree of freedom of four
different photons. Two maximally entangled pairs of photons are generated by two
independent SPDC sources. This implements the Preparation and Superposition
stages. The Free Fall stage is implemented via a probabilistic CZ gate employing a
polarisation-dependent beamsplitter [147, 153, 189]. This gate acts on one photon
from each pair. Postselecting on the result of measurements of these two photons
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Figure 4.4. Four Photon implementation of the Post Selection Quantum Circuit
Simulator. Each qubit of the simulator is encoded in the polarisation degree of freedom
of a photon. The Preparation and Superposition stages are directly implemented by the
creation of two maximally entangled photon pairs by SPDC process in non-linear crystals.
The Control Phase gate on the two geometry qubits (polarisation degree of freedom
of two photons) is implemented thanks to partially polarising beams splitters with
transmittivities TH and TV relative to horizontal and vertical polarisations, respectively.
The polarisation of the photons carrying the geometry qubits (red lines) is measured on
bases defined by an operator U and the results are used for postselection.

4.3.3 Decoherence simulation

In both simulations described above, we can introduce decoherence in the states of
the geometry by coupling different branches of the states to different delays, using
birefringent materials in which photons of different polarisation travel at different
speeds. When the delay information is ignored, this results in decoherence of the
state. The delay effectively acts as an environment degree of freedom.

Consider the PSQC Simulator. The initial state of the polarisation is the
product of two maximally entangled states. Focusing on one pair, the state is
|Ψ−〉 = (|H〉 |V 〉 − |V 〉 |H〉)/

√
2, corresponding to the state of one spin and part of

the geometry. If the photon corresponding to the geometry qubit passes through a
birefringent slice, the resulting state is

|Ψ〉del = 1√
2

(|H〉 |V 〉tV − |V 〉 |H〉tH ), (4.20)

where tH and tV are the distinguishable delays acquired by the horizontal and
vertical polarisations, respectively. If the delay is greater than the coherence time of
the photons (that is, if the delay is larger than the width of the photon packets),
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tracing out the information about delays results in a completely depolarised state:

ρpol
mix = 1

2
(
|HV 〉〈HV |+ |V H〉〈V H|). (4.21)

If instead the delay is less than the coherence time of the photons, the state will be
a partially entangled one:

ρf = ν
∣∣Ψ−〉〈Ψ−∣∣+ (1− ν)ρpol

mix, (4.22)

where ν is a parameter quantifying the residual coherence after the delay between
polarisations. Changing the thickness of birefringent slices allows to vary ν, going
from a pure state to a completely decoherent case, simulating possible decoherence
effects on spatial superpositions of geometry. A similar procedure can be implemented
for the QC simulator.

Possible effects disturbing only the interaction between the two gravitational
field qubit can be implemented in both schemes by varying the relative time arrival
of the photons in the probabilistic control-gates.

4.4 Results from the Quantum Circuit simulator
Due to technical2 difficulties, the experimental simulation is still incomplete. We
report the results we obtained, which concern the simulation of the QC simulator.

In the QC simulator implementation, the CNOT gates of the Superposition
and Recombination stages are deterministically performed in the single photon
path-polarisation space through calcite beam displacers with a fidelity > 99.5%.
The Free Fall stage, represented by the Control-Phase gate with a phase equal to π,
is performed by the interference of the photon paths at the beam splitter, with a
fidelity depending on a number of aspects. First, the fidelity depends on the value
of the transmittivity of the beam splitter, which is |TH |2 = 0.329 ± 0.001 for the
horizontal polarisation and |TV |2 = 0.337± 0.001 for the vertical polarisation. The
fidelity is also affected by the degree of indistinguishability of the interfering photons
in all their degrees of freedom. Polarisation, frequency, time of arrival, and spatial
mode overlap all affect indistinguishability. Time of arrival and spatial mode overlap
are crucial: the arrival time on the BS is controlled by suitable delay lines, while
spatial modes are recombined by fine alignment though optical mirrors.

We measured the entanglement witnessW in (4.19), which requires fewer measure-
ments but is not device independent. We obtained a value ofWexp = −0.514±0.002,
violating the separable bound by more than 311 standard deviations. The statis-
tical uncertainty has been computed through a Monte Carlo simulation assuming
poissonian statistics.

We performed a CHSH test on the polarisation of the photons at the end of the
circuit, obtaining a value Sexp = 2.401± 0.015, which violates the classical bound
by more than 26 standard deviations.

2The experiment had to be put on hold at the beginning of the pandemic. Once experiments
could start again, one of the lasers broke. Due to lock-down measures, the technical support staff
could not come repair the laser until much later.
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4.5 Lessons from the simulations
In the simulations, two systems (the spin qubits) become entangled without inter-
acting directly but by interacting with a third system (the geometry ququart). This
mimics closely what happens during the GME experiment, where the spins on the
nanodiamonds become entangled with each other while they only couple directly to
the position degree of freedom of the masses, which, in turn, couple directly only
to the gravitational field. From the logic circuits, it’s particularly clear that two
non-commuting observables of the geometry ququart come into play, namely σx⊗σx
and σz ⊗ σz. When one introduces decoherence in the geometry ququart, these
observables commute, and entanglement cannot be created. Another way of putting
it is that the geometry ququart starts in an eigenstate of σz⊗σz, but coupling to the
spins sends it in a superposition of such states. When the superposition is destroyed
by decoherence, the spin qubits do not become entangled. Thus the simulations
provide a simple illustration of the underlying quantum mechanical principles at
play.

On the practical aspect, we expect that completing the simulation will allow
to extract useful information about performing the quantum gravity experiment
under realistic levels of noise and decoherence. For future research, it would be
interesting implementing the simulation for a tunable control-phase gate, which
allows to simulate different amounts of free-fall time. It would also be interesting to
implement the QC simulator using two pairs of of entangled photons, using non-linear
optics to simulate the Recombination stage. However, with current technology, the
loss of luminosity is prohibitive.
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Chapter 5

Computing the GME phases
from first principles

Extant derivations of gravitationally-induced entanglement found in the literature
do not include retardation. That is, they neglect any dynamics in the field, and opt
to compute things only using a static approximation. While this approximation is
quantitatively valid in much of the physical regime of interest, it is conceptually in
tension with the crucial assumption that the interaction is mediated by a physical
system, rather than being a direct interparticle relation. As we saw in section 2.5,
the mediation of the interaction is a central assumption in the no-go theorem that
allows to conclude the mediating system—gravity—is behaving non-classically.

In this chapter, based on [60], we develop a Lorentz covariant description of
the GME experiment that is thus manifestly local and dynamical. To achieve
this, we use the path integral formulation for the metric perturbation of linearised
quantum gravity. We then take the stationary phase approximation to compute the
quantum phases in the experiment. Path integrals are the appropriate conceptual
tool when we want the symmetries of the action to remain explicit. With this
strategy, indeed we arrive at a Lorentz covariant description of induced entanglement
that is, in addition, invariant under the gauge symmetries of linearised gravity.1 UV
divergences play no role in this regime, thus emphasising the idea that is a prediction
of quantum general relativity in this low energy regime. Radiation plays no role
in recovering a description of field-induced entanglement that respects all relevant
physical principles. This derivation also has technical advantages over previous works.
We derive a formula for the phases of arbitrary trajectories. Previous computations
assumed that the particles were at rest for most of the experiment so that the
phases at the moment of measurement can be approximated as arising during static
evolution [34, 164]. Here, we do not need such an assumption, the formulas we
derive allow to compute the exact phases given by linearised general relativity for
arbitrary particle trajectories, including possibly relativistic trajectories. Finally,
the formalism developed here extends to an arbitrary number of particles.

1The same can be done in the electromagnetic case, which proceeds analogously and is treated
in appendix B.
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5.1 Mediated entanglement from the path integral
Let us consider the following experimental setup for observing field induced entangle-
ment. We keep the analysis general by treating the case for n particles, interacting
with some field F . Later, we will narrow down to the case of two particles.

Assume N particles, each with an embedded spin-1/2 degree of freedom are
held in a magnetic trap. Denote by |σ〉 = ⊗a |sa〉, where sa ∈ {↑, ↓}, the spin
configuration. At time ti, the particles are released and each particle starts from
its initial position xi

a and is put in a spin-dependent planar trajectory xsaa (t) by
being passed through inhomogeneous and possibly time varying magnetic fields Bz
pointing along an axis z. The paths are such that, by the time tf , the particles have
returned to their initial positions (xf

a = xi
a).

If the spin of a particle does not have a definite z component, the magnetic field
Bz sets the particle into a path-superposition. The field F couples to charges qa of
the moving particles. The coupling of Bz with F , the back-reaction of sa on Bz,
and of F on xa are taken to be negligible. The spins can become entangled due to
their interactions with the field F . At time tf a spin measurement is performed on
each particle.

The partition function of the joint system is

Z ≈
∫
DF ′Dx′ exp

(
iS

~

)
, (5.1)

where Dx′ =
∏
aDx′a, with

S = S
[
x′a(t),F ′(x, t);Bz, σ

]
. (5.2)

The integration is over field configurations F ′(x, t) and over the paths of the point
charges x′a(t). For the sake of notational simplicity, in what follows, we suppress the
dependence of the paths and the field on the space and time coordinates and the
dependence of the action on Bz and σ, since they are not affected by the evolution.

The unitary evolution from ti to tf is given by folding the above path integral
with initial and final states, yielding the Feynman propagator for the system. We
denote such a choice of boundary states as∣∣∣ψi,f

〉
=
∣∣∣F i,f

[
xi,f
a

]〉
⊗
∣∣∣xi,f
a

〉
(5.3)

We take that these boundary conditions are the same for all spin configurations σ
and that the final time is taken sufficiently in the future, when the field has relaxed
and 〈F i|F f〉 ≈ 1. If it were not the case, the effective tracing out of the field and
paths degrees of freedom will hide the field-induced entanglement through false
decoherence. In practice, these boundary conditions can approximately taken to
be classical static configurations, given by the Newtonian field F i,f [xi,f

a ] of masses
sitting at the initial and final particle positions xi,f

a .
Since the path that each particle takes is determined by the spin and, by

assumption, the z-component of the spin does not change along the path, the
evolution operator is of the form

Ui→f =
∑
σ

|σ〉〈σ| ⊗ Uσi→f , (5.4)
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where Uσi→f is the Feynman propagator between the (identical) boundary states at ti
and tf for a given spin configuration σ.

The task now is to compute Uσi→f . We perform the field integration by taking the
stationary phase approximation, keeping only the contribution of field configurations
that are on-shell. That is, the action now depends on field configurations F [xa(t)]
that solve the classical field equations, sourced by particles with trajectories xa(t)
of charge qa with boundary conditions (5.3). Then,

Z ≈
∫
Dx′ exp

(
iS
[
x′a,F [x′a]

]
~

)
. (5.5)

This approximation amounts to neglecting the UV pathologies of the field and
other divergences. It is thus implicitly assumed that these effects and their proper
treatment is not relevant in the low energy regime of interest here. This assumption
will be justified a posteriori, when nevertheless the procedure yields a complete
description of induced entanglement that respects the relevant physical principles of
Lorentz invariance and gauge invariance.

During the times ti and tf , for each spin configuration σ there is a classical path
xsaa determined by the magnetic field Bz coupled to the spin sa of each particle.
These paths can be taken as orthogonal states, and the remaining integral over the
paths be approximated by a second stationary phase approximation, keeping only
the contribution on these paths. We now have

Uσi→f ≈ exp
(
iSos [xσa ,F [xσa ]]

~

) ∣∣∣ψf
〉〈
ψi
∣∣∣ (5.6)

where the superscript ‘os’ is to remind that Sos is the on-shell action for the system.
Let us apply this to a state which is initially in a spin superposition∣∣∣Ψi

〉
=
∑
σ

Aσ |σ〉 ⊗
∣∣∣ψi
〉

(5.7)

with Aσ complex amplitudes. At the moment of measurement the state is∣∣∣Ψf
〉

= Ui→f
∑
σ

Aσ |σ〉 ⊗
∣∣∣ψi
〉

=
∑
σ

Aσ |σ〉 ⊗ Uσi→f

∣∣∣ψi
〉

∣∣∣Ψf
〉

=
∑
σ

Aσ exp
(
iSos [xσa ,F [xσa ]]

~

)
|σ〉 ⊗

∣∣∣ψf
〉
.

(5.8)

Notice that in this final state, the spins of the particles are not entangled with the
rest of the system any more. However, depending on the values of Sos, entanglement
can be produced among the spin degrees of freedom.

To make more progress, let’s remind ourselves that the action S in general splits
into two parts,

S = SM + SF (5.9)

The term SM does not depend on the field F and contains the free matter kinetic
terms and the coupling of Bz with the spins sa. The part SF will contain the kinetic
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terms for the field F and the coupling of F with the charges qa, but no interparticle
interaction. This is the part that describes the field mediation. In principle SM
can be computed, or measured independently. In practice, it may be preferable to
remove the effect of SM by an appropriately symmetric choice of setup, such that
Sos

M is the same for all spin configurations and becomes a global phase that can be
ignored. Let us assume such a choice of setup has been made. We are then left with∣∣∣Ψf

〉
∝
∑
σ

Aσ |σ〉 eiφσ ⊗
∣∣∣ψf
〉
, (5.10)

where we have defined
φσ = Sos

F [xσa ,F [xσa ]]
~

(5.11)

The phases φa are responsible for entanglement production mediated through F .
They are manifestly local because the on-shell action is Lorentz covariant (and gauge
invariant). The task at hand now is to calculate the action Sos

F .

5.2 The action for the gravitational field of moving par-
ticles

In this section we calculate Sos
F when the field F is the metric perturbation of

linearised gravity sourced by point particles. The analogous electromagnetic case is
is calculated in appendix B. Since the spacetime curvature is everywhere weak, far
smaller than in the vicinity of a black hole horizon, the linearised approximation is
applicable. We denote the gravitational perturbation field sourced by the particles
as F , which lives on a background Minkowski spacetime.

5.2.1 On-shell action

The action for linearised gravity minimally coupled to the energy-momentum tensor
Tµν is given2 by [161]

SF = c4

16πG

∫
d4x

(
− 1

4∂ρhµν∂
ρhµν + 1

2∂ρhµν∂
νhµρ − 1

2∂νh
µν∂µh+ 1

4∂
µh∂µh

)
+1

2

∫
d4xhµνT

µν , (5.12)

where d4x = dtd3x. The full spacetime metric is given by gµν = ηµν + hµν with
the metric perturbation satisfying |hµν | � 1, ηµν is the Minkowski metric, and
h = ηµνh

µν . The action is invariant under an infinitesimal change of coordinates
xµ → x′µ = xµ + ξµ(x) under which the metric perturbation transforms as h′µν(x′) =
hµν(x)− (∂µξν + ∂νξµ)(x). We use the gauge freedom to simplify calculations and
write the Lagrangian in the harmonic gauge, where the perturbation satisfies

∂µhµν = 1
2∂νh. (5.13)

2Greek indices denote 4–vectors and bold latin letters denote 3–vectors, the metric signature is
(−,+,+,+).
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Boundary terms at infinity are taken to vanish. In this gauge, the action SF simplifies
to

SF = c4

64πG

∫
d4x

[
− ∂ρhµν∂ρhµν + 1

2∂
µh∂µh

]
+ 1

2

∫
d4xhµνT

µν (5.14)

after integrating by parts. The Euler-Lagrange equations for hµν are then

�hµν = −16πG
c4 T̄µν , (5.15)

where the overbar denotes the operation of trace-reversal:

T̄µν = Tµν −
1
2ηµνT (5.16)

with T = ηµνTµν . To obtain the on-shell action, we place (5.15) into (5.14) and
integrate by parts. We get

Sos
F = 1

4

∫
d4x hµνT

µν . (5.17)

The interaction between matter and gravity is entirely encoded in SF . As shown
in the previous section, Sos

F is the central object of interest for observing induced
entanglement: this Lorentz covariant and gauge invariant quantity will be measured
in the phases of the final spin state. We emphasise that the use of the Lorentz gauge
above is an intermediate step in the calculation of a gauge invariant quantity. The
same result, requiring more calculations, could be arrived at by using, for instance,
a Coulomb-like gauge [209]. Also, note that the on-shell action is simply one half of
the coupling term 1

2hµνT
µν of the Lagrangian. This numerical factor is necessary to

correctly recover the Newtonian limit (see below).

5.2.2 Point particles

Let us now consider the gravitational interaction of point particles. The use of
point particles is an approximation that allows to use an explicit solution of the
field equations. One could consider realistic smooth mass distributions and repeat
the calculation. The logic and conclusions will be the same. So long as the size of
the two matter distributions is much smaller than their separation, the use of point
charges will be a good approximation. The stress-energy tensor is

Tµν(t,x) =
∑
a

maδ
(3)(x− xa(t))V µν

a (t) (5.18)

where
V µν
a (t) = γa(t)vµa (t)vνa(t) (5.19)

with vµa (t) = (c, dxa/dt) = (c,va), where va is the three velocity and γa(t) =
(1− ‖va(t)‖2/c2)−1/2 the Lorentz factor.

From the equations of motion, the metric perturbation of this mass configuration
expressed in the Lorentz gauge is

hµν(t,x) = 4G
c4

∑
a

[
maV̄

µν
a

da − da · va/c

]
t=ta(t,x)

, (5.20)
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where da(t,x) = x− xa(t), da = ‖da‖ and V̄ µν
a = V µν

a − 1
2η

µνVa, Va = ηµνV
µν
a . A

crucial aspect of the formula above is that all quantities on the right hand side
are evaluated at the retarded times ta. The retarded time ta = ta(t,x) is the time
coordinate at which the past lightcone of the event (t,x) intersects the trajectory of
particle a. It is defined implicitly by the relation:

ct− cta = ‖x− xa(ta)‖. (5.21)

The solutions (5.20) are the gravitational analogue of the Liénard–Wiechert
potentials of electromagnetism [121]. The procedure to derive them is proceeds
analogously as in electromagnetism, although they do not appear to be as well
known in the literature. Using these solutions, the on-shell action becomes

Sos
F = G

c4

a6=b∑
a,b

∫
dt mambV̄

µν
a (tab)Vbµν(t)

dab(t)− dab(t) · va(tab)/c
(5.22)

Here, the retarded time tab = tab(t) is the coordinate time at which the past lightcone
of the event (t,xb(t)) intersects the worldline of particle a. It is defined by the
relation

ct− ctab = ‖xb(t)− xa(tab)‖. (5.23)

Then dab(t) = xb(t)− xa(tab) and dab = ‖dab‖.
The quantities given by (5.22) can in principle be computed exactly for any

choice of trajectories xa. In the next section, we define some useful approximations.

5.2.3 Three possible approximations, and their relations

There are obvious approximations of interest to the exact expression (5.22) for the
on-shell action: the slow-moving approximation and the near-field approximation.
These are two distinct approximations. When both approximations are taken, we
arrive at the ‘Newtonian limit’.

The slow-moving approximation is when the charges or masses are moving with
speeds much smaller than the speed of light, ‖va‖ � c. Since

V̄ µν
a Vbµν = c4 +O

(
c3‖va‖

)
, (5.24)

when ‖va‖ � c, the exact expression (5.22) can be well approximated by

Sslow
F = 1

2G
a6=b∑
a,b

∫
dt mamb

dab(t)
. (5.25)

Note that dab(t) still takes into account retardation: it is the distance from the
position of particle b at time t to the retarded position of particle a. Equation (5.25)
can thus be regarded as the retarded version of Newton’s law for gravitation. To
summarise, the slow-moving approximation retains the finite speed of propagation
of signals (via retardation effects) while neglecting other relativistic effects, such
as the relativistic corrections to mass and momentum and the effect these have on
the field, but includes retardation. In the slow-moving approximation (5.25), the
interaction is still local.
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The second approximation that can be taken for (5.22) is for when the timescale
of interest yields a region much larger than the characteristic scale of the spatial
separation of the masses (or charges). This can be called the near-field approximation
in the following sense: if the source’s characteristic scale of time variation (divided
by c) is much larger than the distance from the other masses, then we can neglect
retardation between the masses. In this approximation, the retarded times tab in
(5.22) are replaced by the coordinate time t, yielding an instantaneous interaction

Snear
F = G

c4

a6=b∑
a,b

∫
dt mambV̄

µν
a (t)Vbµν(t)

‖xb(t)− xa(t)‖ − (xb(t)− xa(t)) · va(t)/c
. (5.26)

This approximation is clearly distinct from the slow-moving approximation as it
disregards retardation but it does not presuppose non-relativistic speeds for the
particles.

Lastly, taking both of the above approximations yields the Newtonian limit.
Indeed, taking equal masses, (5.25) approximates to

SN
F =

∫
dt Gm

2

d(t) , (5.27)

which is the correct result for a Newtonian interaction. It is what one obtains by
formally sending c→∞. Taking d to be constant, we recover the formula used in
the literature for the GME [34, 164], where the phase over a period ∆t is taken to
be given by the Newtonian potential energy multiplied by ∆t

SN
F
~

= Gm2

d

∆t
~
. (5.28)

5.2.4 Observable effect of retardation

To connect with the GME experiments, let us examine the observable effects of
retardation in the simple case of two equal masses. In the experiments, the masses will
move at non-relativistic speeds, so that we can take the slow-moving approximation,
and spin-dependent phases (5.11) are given by

φσ = Sslow
F [xsaa ]

~
= Gm2

2~

∫
dt
( 1
d12(t) + 1

d21(t)

)
. (5.29)

This formula will yield some corrections to the Newtonian approximation taken in the
original papers [34, 164] and in the rest of the thesis. Besides this quantitative effect,
qualitatively different behaviour can be predicted when the spatial superposition of
the particles happens entirely within spacelike separated regions.

The situation is depicted in figure 5.1. Take the particles at rest at a distance d for
all times t < t1 and t > t2. Between t1 and t2, the particles undergo a spin–dependent
motion. The setup is such that c(t2 − t1) < d, so that the non-stationary parts of
the worldlines are spacelike separated. At all times before t2 and after t3 = t2 + d/c
then, the retarded position of each particle with respect to the other is constant,
meaning that the field is not in superposition there. During the interval from t2 to
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t

t1

t2

t3

d

Figure 5.1. Retardation prevents the creation of entanglement. In this setup,
the particles are in a superposition in spacelike separated regions. When they are
in superposition they move through a static semiclassical field, when the field is in
superposition the particles are not. The phases generated in this setup do not lead to
entanglement.

t3, each particles moves in a superposition of fields, but the particles themselves are
not in a superposition. In this setup, no entanglement can be generated.

Let xsaa (t) be the displacement of particle a from its initial position due to the
coupling of the external magnetic field Bz with its spin, so that

dσ21(t) = d− xs1
1 (t) + xs2

2 (t21). (5.30)

Recall that |σ〉 = ⊗a |sa〉. Using (5.25), φσ is a sum of two integrals that can be
done by splitting the domain of integration in four. We have for example∫ tf

ti

dt
dσ21(t) =

∫ t1

ti

dt
d

+
∫ t2

t1

dt
d− xs1

1 (t) +
∫ t3

t2

dt
d+ xs2

2
(
t21(t)

) +
∫ tf

t3

dt
d
. (5.31)

Note that each of these terms depends on only one spin at a time. This implies that
the phases can be written as

φσ = C + φsa + φsb . (5.32)

Thus, if the initial states of the spins is separable, so will be the final state. No
entanglement is generated. If, on the other hand, one calculates the phase in the
Newtonian limit with instantaneous interaction, the masses and hence the spins
result in an entangled state.

This effect can in principle be observed, although it would certainly be easier to
do with electric charge and electromagnetic interactions.
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5.3 Conclusion
We have computed the phases giving rise to gravity mediated entanglement and
shown that they are manifestly Lorentz invariant (thus causal) and gauge invariant
quantities. We derived the approximation when the particle motion is non-relativistic
and showed that this is still local as it includes the corrections for retardation. Finally,
we have seen that retardation has an observable effect in the production of induced
entanglement.
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Part III

About Time
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Chapter 6

An experiment to test the
discreteness of time

Optical clocks using strontium 87Sr are among the most accurate in the world. The
time elapsed between two of their ticks is about 10−15 s (the inverse of strontium
frequency) with a precision of 10−19 [168]. Physical phenomena that probe much
smaller characteristic timescales have also been measured. For instance, the lifetime
of the top quark is 10−25 s. Such a result is obtained experimentally from a statistical
analysis, where the short duration of the lifetime is compensated by a large number
of events. Theoretical physics features even shorter scales: in primordial cosmology,
the inflation epoch is believed to have lasted 10−32 s. Based on a cosmological model,
the recent paper [260] even argues that the precision of recent atomic clocks already
sets an upper bound of 10−33 s for a fundamental period of time.

Planck time is a far smaller timescale. We recall that the planck time is defined
as

tP
def=

√
G~
c5 ≈ 10−44 s, (6.1)

where G is Newton’s constant, ~ the reduced planck’s constant and c the speed of
light. It can seem an impossible task to probe time at the planck scale. However, the
example of the lifetime of the top quark shows that it is possible to overtake clock
accuracy limitations by several orders of magnitude using statistics. In this chapter,
we examine the following question: if time behaves differently from a continuous
variable at the planckian scale, how could the departure from this behaviour be
inferred experimentally? To answer this question, we assume that proper time
differences take discrete values in multiple steps of planck time, and devise a low
energy experiment that would detect this effect.

The proposal in this chapter is motivated by the recent experimental proposals
to detect the non-classicality of the gravitational field by detecting gravity mediated
entanglement (GME) [33, 34, 149, 164, 166] and the production of non-gaussianity
[140] introduced in chapter 1. Since probing the quantum gravity regime with
particle colliders may be practically impossible, it is intriguing that these low energy
experiments are not too far removed from current capabilities. Instead of accelerators,
the suggestion in these proposals is to quantum control slow moving nanoparticles
or use a Bose-Einstein condensate.
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Here, we will see that a similar setup, with similar technological requirements, is
able to probe planck-sized time intervals The plan is the following. In section 6.1,
we present the experimental setup, which involves a single mass going through a
matter-wave interferometer next to a source mass. The two masses interact only
via gravity. In section 6.2, we introduce the hypothesis that proper time differences
are discrete at the planck level, and discuss how this affects the measurements
at the end of the interferometer. Detecting these effects imposes a number of
constraints on the experimental parameters, which we deduce in section 6.3. Then,
in section 6.4, we suggest a set of reasonable parameters that fulfil these constraints.
In section 6.5, we complete the analysis by checking that it is possible to keep
environmental decoherence at bay long enough. Finally, in section 6.6 we discuss
the time-discreteness hypothesis itself. This chapter is based on [61].

6.1 Experimental setup
The proposed experimental setup is depicted in figure 6.1. A spherical nanoparticle
of mass m with embedded magnetic spin is dropped simultaneously with a second
mass M . The mass m is then put into a spin-dependent superposition of paths by
the application of a series of electromagnetic pulses. This technique was proposed in
[34, 265]. In the branch of closest approach, m and M are at a distance d, in the
other, they are at a distance d+ l. The superposition is held at these distances for a
time t, as measured in the laboratory frame. While the two masses free fall, they
interact gravitationally. If linearised quantum gravity holds, then the two quantum
branches in the total state evolve differently, accumulating a relative phase. After
the superposition has been undone, this phase is visible in the state of the spin of
the mass m.

Let us see this in detail. The quantum state of the mass m is given by its position
in the apparatus and the orientation of its embedded spin. There will be three
relevant position states1 |L〉, |C〉 and |R〉, respectively left, centre and right. For
the spin, we use the canonical basis, |↑〉 and |↓〉, in the z-direction. The mass m is
prepared at t0 in the central position with the spin in the positive x-direction:

|ψ0〉 = 1√
2
|C〉 (|↑〉+ |↓〉) . (6.2)

An inhomogeneous magnetic field is then applied to the mass m, entangling its
position with its spin so that at time t1 the state is

|ψ1〉 = 1√
2
|L ↑〉+ 1√

2
|R ↓〉 . (6.3)

The particle is then allowed to free-fall for a time t. During this time, it interacts
gravitationally with the mass M . The displacement of the masses due to their
gravitational attraction is negligible. The two states |L〉 and |R〉 are eigenstates of
the hamiltonian and each acquires a phase proportional to the newtonian potential

1It has recently been shown [54] that treating the position states as eigenstates is a valid
approximation in this setup.
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Figure 6.1. Spacetime view of the experiment. For a time tacc, an inhomogeneous
magnetic field is applied that sets a mass m with embedded spin in a superposition of two
paths, at a distance d and d+ l, respectively, from another mass M . The masses are in
free fall for a time t, as measured in the laboratory, after which the procedure is reversed
and the superposition undone. During this time t, the two trajectories accumulate a
different phase due to the gravitational interaction with M .

induced by M . So at time t2 the state is

|ψ2〉 = 1√
2
eiφL |L ↑〉+ 1√

2
eiφR |R ↓〉 , (6.4)

where
φL = GMm

~
t

d+ l
and φR = GMm

~
t

d
. (6.5)

At this point, another inhomogeneous magnetic field is applied to undo the superpo-
sition. The final state of the particle is, up to a global phase,

|ψ3〉 = 1√
2
|C〉

(
|↑〉+ eiδφ |↓〉

)
, (6.6)

where the relative phase δφ is given by

δφ = GMmt

~
l

d(d+ l) . (6.7)
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Information about the gravitational field is now contained in the state of the spin,
which in turn can be estimated from the statistics of spin measurements. Concretely,
we consider a measurement on the spin of the particle along the y-direction

|±i〉 = 1√
2
|↑〉 ± i 1√

2
|↓〉 . (6.8)

Born’s rule gives the probability P+ of finding the spin in the state |+i〉:

P+(m,M, d, l, t) = 1
2 + 1

2 sin δφ, (6.9)

where we compute δφ as a function of m,M, d, l and t through equation (6.7). This
equation for the probability is a theoretical prediction of linearised quantum gravity.

Experimentally, the probability can be measured by the relative frequencies in
collected statistics. The experiment is repeated N times keeping the experimental
parameters fixed. If the outcome |+i〉 is recorded N+ times, the frequency

p+(m,M, d, l, t) = N+
N

(6.10)

is then the experimentally measured value of the probability. This procedure can
be repeated for different sets of experimental parameters to verify the functional
dependence of p+ to these. In what follows, we propose an experiment that can
detect a statistically significant discrepancy between P+ and p+. This discrepancy
would signal a departure from linearised quantum gravity.

The above experimental setup is similar to that proposed to detect GME in [34],
with the main difference that for our purpose we only require one mass, not two,
in a superposition of paths. It is thus conceptually more similar to the celebrated
Colella-Overhauser-Werner (COW) experiment [3, 69]. However, the task we have
set ourselves here and the method to achieve it, goes much beyond showing that
gravity can affect a quantum mechanical phase and induce an interference pattern.
To detect a potential discreteness of time, we need a more sensitive apparatus, and
so the gravitational source M will need to be much weaker. In our case, M is not
the Earth, but a mesoscopic particle, essentially a speck of dust.

6.2 Hypothesis: time discreteness
While the newtonian limit of linearised quantum gravity is sufficient to compute the
phase difference δφ, it is can also be understood in general relativistic terms [62, 63].
The mass M induces a Schwarzschild metric which dilates time differently along
each of the two possible trajectories of m. Then, equation (6.7) can be recast as

δφ = m

mP

δτ

tP
, (6.11)

where δτ is the difference of proper time between the two trajectories, given by

δτ = GM

c2
l

d(d+ l) t. (6.12)
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Now, it is widely believed that the smooth geometry of general relativity should
be replaced, once quantised, by some discrete structure. In particular, we may
expect time to be granular in some sense. In which sense precisely, we do not know.
However, since δτ admits a straightforward interpretation of a covariant quantum
clock, it makes a good candidate to reveal discrete features of time. Thus we make
the following hypothesis: δτ can only take values which are integer multiples of
planck time tP. That is, (6.12) is modified to:

δτ = n tP, n ∈ N. (6.13)

Additional motivation for the hypothesis and possible alternatives are discussed in
section 6.6. For now, it can be taken just as the simplest implementation of the
idea that time is discrete at a fundamental level, similar in philosophy to the idea
that everyday-life matter is not continuous, but instead made of atoms. Devising an
experiment to detect this discreteness and examining its feasibility is the task we
have set ourselves in this work.

Equation (6.13) is still incomplete and we need to posit a functional relation
between the level n and the parameters M,d, l, t. We rewrite equation (6.12) as

δτ = t

β
tP, (6.14)

where we have defined
β = d(d+ l)c2

GMl
tP. (6.15)

Note that β has dimensions of time. To make the hypothesis quantitative, we take
n to be given by the floor function2

n =
⌊
t

β

⌋
. (6.16)

That is, n is the integer part of the dimensionless quantity t/β. The main lessons of
our results do not depend on the specific choice (6.16) for the functional dependence
between t/β and n. Other modifications of the continuous behaviour in (6.12), so
long as they display features of planckian size, could be probed by the experiment.

Thus, we have
δτ =

⌊
t

β

⌋
tP. (6.17)

The consequences of this hypothesis are revealed in the measured probability p+ of
equation (6.10). If time behaves continuously, p+, as a function of time t/β will fit
the smooth (blue) curve in figure 6.2, given by

P+ = 1
2 + 1

2 sin
(
m

mP

t

β

)
. (6.18)

If the hypothesis holds, the observed profile for the probability will follow that of
the orange step function in figure 6.2, given by

P h
+ = 1

2 + 1
2 sin

(
m

mP

⌊
t

β

⌋)
. (6.19)

2The floor bxc of a real number x is the largest integer smaller than x, aka the integer part of x.
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To test the hypothesis, the strategy is thus to plot experimentally the curve p+(t/β).
Observing plateaux would be the signature of time-discreteness.
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Figure 6.2. Probability of measuring spin |+i〉 as a function of t/β under the
continuous and discrete time hypotheses. Blue line: δτ is smooth as in equation (6.14).
Orange line: δτ is discrete as in equation (6.17). We have taken the value ofm = 10−2mP.
The experimental parameters shown in table 6.1 would produce 100 data points scanning
the range of t/β depicted here, with a sufficient resolution to decide which of the two
curves is realised in nature.

6.3 Ensuring visibility of the effect
Each experimental data point for p+(t/β) is obtained from computing the statistical
frequency of the outcome |+i〉. Point by point, a scatter plot of p+ against t/β will
be obtained. We must choose the experimental parameters so that the difference
between P+ and P h

+ can be resolved. This imposes requirements on the minimal
precision of the experimental apparatus and on the maximal permissible gravitational
noise in the environment.

6.3.1 Visibility of the vertical axis

The uncertainty ∆p+ for the probability p+ after N runs results from using finite
statistics and is of the order

∆p+ ∼
1√
N
. (6.20)

The vertical step α between the plateaux is given by

α =
∣∣∣∣sin((⌊ tβ

⌋
+ 1

)
m

mP

)
− sin

(⌊
t

β

⌋
m

mP

)∣∣∣∣ . (6.21)
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We assume that m � mP, consistent with the fact that it is hard to put a large
mass in a superposition. The above expression simplifies to

α(t) ≈ m

mP
cos

(⌊
t

β

⌋
m

mP

)
. (6.22)

So the steps are most visible when ∣∣∣∣ tβ m

mP

∣∣∣∣� 1. (6.23)

Then the expression simplifies to

α(t) ≈ m

mP
. (6.24)

Requiring that the probability uncertainty is an order of magnitude smaller than
the vertical step, ∆p+ < 10−1α, we find the constraint

N > 102
(
mP
m

)2
. (6.25)

We see that a larger mass m means that fewer runs N per data point are required,
which implies a shorter total duration Ttot of the experiment. Indeed, since plotting
p+(t/β) requires N runs per data point, each run requiring at least a time t, a lower
bound for the total duration of the experiment is

Ttot ∼ NdpNt, (6.26)

where Ndp is the number of data points. Thus, the constraint (6.25) can be restated
as

Ttot
Ndp t

> 102
(
mP
m

)2
. (6.27)

This constraint imposes a trade-off between the time required to resolve the discrete-
ness and the mass that has to be in superposition. It counter-balances the fact that
it is harder to achieve quantum control of a large mass.

6.3.2 Visibility of the horizontal axis

The uncertainty in t/β is found via the standard formula for the propagation of
uncertainty and can be expressed as

∆(t/β) = U
t

β
, (6.28)

where

U
def=

√(∆t
t

)2
+
(

d

d+ l
+ 1

)2 (∆d
d

)2
+
(∆M
M

)2
+
(

d

d+ l

)2 (∆l
l

)2
. (6.29)

By assumption (6.16), the width of the plateaux is 1. To place several data points
on each plateau, we require the typical uncertainty to be an order of magnitude
smaller, i.e. ∆(t/β) < 10−1. We thus impose the constraint

U < 10−1 β

t
(6.30)

on the experimental parameters. Note that a given U determines the highest value
of n = bt/βc for which the discontinuities can be resolved.



6.3 Ensuring visibility of the effect 84

6.3.3 Gravitational noise

There is no analog of a Faraday cage for gravitational interactions, so influences by
other masses will also contribute to the accumulated phase δφ. Since the experiment
we are considering is in a sense an extremely sensitive gravimeter, these would need
to be taken carefully into account. We distinguish between ‘predictable’ gravitational
influences and ‘unpredictable’ gravitational influences, i.e. gravitational noise. The
latter type will dictate the degree of isolation required for a successful realisation of
the experiment, adding another visibility constraint, while the former type can be
dealt with by calibration.

The presence of unexpected masses in the vicinity of the apparatus may disturb
the measurement. It will contribute to the proper time dilation by an amount η,
modifying (6.19) to

P h
+(η) = 1

2 + 1
2 sin

(
m

mP

⌊
t

β
+ η

tP

⌋)
. (6.31)

Getting a single data-point requires N drops, and for each drop, the perturbation η
may be a priori different. However, it should be small enough so that it does not
make the probability P h

+ jump to another step, i.e. η is a negligible noise if⌊
t

β
+ η

tP

⌋
=
⌊
t

β

⌋
. (6.32)

Of course, η is a random variable over which the control is limited. To a first
approximation, the condition (6.32) can be implemented over the N drops by
requiring

∆η < 10−1tP. (6.33)

For instance, the gravitational noise induced by the presence of a mass µ at a
distance D � l, d is at most

ηmax = ±Gµl
D2

t

~
. (6.34)

Thus, we get a fair idea of how isolated the apparatus should be with the condition

2Gl µ
D2

t

~
< 10−1tP. (6.35)

The ratio
A = µ

D2 (6.36)

is a measure of the impact that a mass µ has on the visibility of the discontinuities,
if it is allowed to move uncontrollably as close as a distance D away from the
experiment. Thus, we end up with the following constraint

A l t < 5× 10−2 tPmP
lP

. (6.37)

This equation is a requirement on the control of the environment necessary to resolve
the discontinuities. All things being equal, shorter superpositions are less sensitive
to the gravitational noise.
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Above, we took into account the effect of a single mass µ. This not sufficient
to guarantee that there will not be a cumulative effect from several masses around.
However, note that if these masses are homogeneously distributed, their contributions
may average out.

The ‘predictable’ type of gravitational influences are systematic errors arising,
for example, from the gravitational field of the Earth, the Moon, and the motion
of other large bodies, such as tectonic activity or sea tides, but also from small
masses that will unavoidably be present in the immediate vicinity of the mass m,
such as the experimental apparatus itself and the surrounding laboratory. Given the
extreme sensitivity of the apparatus, it will likely not be possible to make all these
gravitational influences satisfy (6.37). However one can calibrate for the contribution
of a mass µ at distance D if it moves slowly with respect to the time Nt that it
takes to collect a data point i.e. if

Ntv � D, (6.38)

with v the speed of the mass. Another possibility that can be calibrated for is if the
mass is not moving slowly but the uncertainty in its position is small with respect
to D (for instance, a moving mechanical part or the Moon).

An example of a calibration procedure is as follows. Let us assume that the
different values of t/β are obtained by changing d while keeping M , l, and t fixed
(as considered in the next section). The mass µ will contribute a constant phase φB ,
which we can estimate by running the experiment without M . So long as the masses
are slow moving, it suffices to rotate the measurement basis to

1√
2
|0〉+ 1√

2
ei(φB±

π
2 ) |1〉 (6.39)

rather than {|±i〉}.

6.4 Balancing act
Let us summarise the three experimental constraints that we derived above.

102 Ndp t

Ttot
<

(
m

mP

)2
[vertical]

U
t

β
< 10−1 [horizontal]

A l t < 5× 10−2 tP mP
lP

[noise],

(6.40)

with
t

β
= M

mP

ctl

d(d+ l) . (6.41)

These constraints have to be satisfied in order to have a chance to resolve the
discontinuities in p+ that would result from our hypothesis. We now proceed to
identify a set of reasonable parameters that satisfy the constraints. We will make a
series of assumptions based on current technological trends. We will number the
assumptions to make them visible.



6.4 Balancing act 86

1. Any of the parameters M , d, l and t could be modulated to scan a range of
t/β. Since t/β is most sensitive to changes in d (quadratic dependence), we
assume the modulation of d, keeping M , l and t fixed.

2. The total duration of the experiment is about a year

Ttot ∼ 107 s. (6.42)

3. The plot requires about a hundred data points

Ndp ∼ 102, (6.43)

to be distributed over ten plateaux

t/β ≤ 10. (6.44)

4. Experimentally, the maximal distance between the two branches of the super-
position cannot be very large, and so we assume

d� l. (6.45)

From these first assumptions, the system of inequalities (6.40) simplifies to

t < 103
(
mP
m

)2
s [vertical]

U < 10−2 [horizontal]

A l t < 5× 10−2 tP mP
lP

[noise]

t/β ≤ 10 [range],

(6.46)

with
t

β
= M

mP

ctl

d2 . (6.47)

The uncertainty U , defined by equation (6.29), depends on the precision in t, M , d
and l. With the assumption l� d its expression simplifies to

U =

√(∆t
t

)2
+
(∆M
M

)2
+
(∆d
d

)2
+
(∆l
l

)2
. (6.48)

Then, the [horizontal] inequality implies that each of t, M , d, and l will have to be
controlled better than 1 part in 100.

5. It is reasonable to expect that the uncertainty U will be dominated by the
uncertainty in the superposition size l, thus,

U ≈ ∆l
l
. (6.49)

6. We assume possible to control the size of the superposition to the scale of a
few atoms, i.e.

∆l = 10−9 m. (6.50)
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7. From the above two points we have a lower bound for the value of l. Taking l
larger, would only make the experiment harder because of decoherence and
gravitational noise. We thus take

l ∼ 10−7 m, (6.51)

which satisfies the [horizontal] constraint, allowing to resolve the first 10 steps.

We have now solved the [horizontal] constraint and fixed l. The remaining
constraints evaluate to

t < 103
(
m

mP

)2
s [vertical]

A t < 4× 10−11 kg s m−2 [noise]
Mt

d2 < 7× 10−9 kg s m−2 [range].

(6.52)

All three equations suggest to take t as small as possible. Nonetheless, this cannot be
too short because the superposition is created by a magnetic field B that separates
the branches at a distance l. This process requires some time tacc, which is bounded
from below by the highest magnetic field Bmax that can be created in the lab.
Concretely3

µB
Bmax
l

>
ml

t2acc
, (6.53)

where µB is the Bohr magneton (µB ≈ 10−23 J.T−1).

8. t should be at least as long as tacc, say

t ∼ 3 tacc. (6.54)

9. Taking Bmax ∼ 102 T, which is the value of the strongest pulsed non-destructive
magnetic field regularly used in research [150], we get, in SI units,

10−8t2 > m. (6.55)

10. Considering the difficulty to put a heavy mass in superposition, we can minimise
both t and m under the [vertical] constraint of (6.52) and equation (6.55). We
find

m = 3 · 10−10 kg ∼ 10−2mP

t = 10−1 s.
(6.56)

These values are consistent with the assumptions made above that m � mP and
∆t/t� 10−2. We have thus solved the [vertical] constraint too. We are left with

A < 4× 10−10 kg m−2 [noise]
M

d2 < 7× 10−8 kg m−2 [range].
(6.57)

3We assume the masses are made of a material that allows neglecting diamagnetic effects. If
diamagnetism cannot be ignored, one has to resort to a more complicated scheme of pulses, inverting
the direction of the magnetic field gradient at specific intervals as detailed in [197], or inverting
both the direction of the gradient and the spins as proposed in [256]. Alternatively, one can use a
different method of wavepacket separation, like that detailed in [208].
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11. Considering the a priori difficulty to isolate the system from external pertur-
bations, the noise inequality fixes the minimal upper bound for A, i.e. we
want to tolerate perturbations as high as

A = 4× 10−10 kg m−2. (6.58)

This threshold is very sensitive. To give an example, it corresponds to the gravity
induced by a bee flying 230m away. Such a high control might only be attainable in
space, where cosmic dust particles, with typical mass of 5µg [45], would need to be
kept 4 m away from the masses.

We are thus left with one last inequality which reads, in SI units,

d > 4× 103√M. [range] (6.59)

12. We have implicitly assumed that m is a test mass moving in the geometry
defined by M , so we require M & 10 m for consistency. Choosing the minimal
value

M = 10 m, (6.60)

leads to
d ≥ 0.17 m. (6.61)

This corresponds to the lower bound for the range that d will scan, corresponding
to t/β = 10. The value t/β = 1 provides an upper bound of d ≈ 54 cm. Note that
the assumption made above that ∆d/d, ∆M/M � 10−2 is indeed reasonable.

Casimir-Polder. So far, we have not taken into account the Casimir-Polder (CP)
force between the two masses. The modification of the vacuum energy between
two perfectly conducting, parallel discs of area a a distance d apart [236] results
in a force FCP = ~cπ2

240d4a. Taking this force as an overestimate of that between two
spherical dielectric particles of cross-sectional area a a distance d apart, we see that
the CP force is at most a million times weaker than the gravitational force and can
thus be neglected.

Uncertainty on m. A small shift δm on the mass m adds a phase difference
ε = δm/mP · bt/βc, which in turn causes a shift δP in the probability. Since
m � mP and t/β < 10, then ε � 1 and the shift is to first order δP ≈ 1

2ε. The
uncertainty in m does not affect the visibility of the probability axis if δP � α, i.e.
if δm/m � 2/ bt/βc. This last condition on m means that the mass m should be
known to one part in 100, which is easily reachable.

This concludes our derivation of a set of parameters that satisfies the constraints of
the previous section and, thus, allows to probe planckian features of time. The values
are summarised in table 6.1. As a corroboration of the analysis, the experimental
plot is simulated for these parameters in figures 6.3 and 6.4. There, we see how
the effect becomes visible when the gravitational noise and the uncertainty on the
experimental parameters satisfy the constraints derived above.
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Figure 6.3. Simulated data points with decreasing values of ∆l. The value of the
parameters is set as in table 6.1, assuming no gravitational noise. Each point point
is obtained by sampling N times the probability distribution P h

+ in (6.19), where the
parameters t , l and d are themselves each time sampled from a normal distribution
with the corresponding uncertainty. From left to right, the uncertainty in l takes the
values 10−8m, 5 × 10−9m and 10−9m, demonstrating that the effect becomes visible
when the experimental parameters have little uncertainty, see section 6.3.2. Note how
the discontinuities on higher values of t/β require higher precision to be resolved.
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Figure 6.4. Simulated data points with decreasing gravitational noise. The data
points are obtained in the same manner as those in figure 6.3, with the following difference.
At each run, a value of A is picked uniformly at random from [−Amax, Amax] and the
quantity Alt is added to t/β before sampling the distribution. This procedure simulates
the influence of a single mass moving uncontrollably while statistics are collected, see
section 6.3.3. The value of the parameters is as set in table 6.1, while Amax is, from
left to right, 1/(2tl), 1/(5tl) and 1/(20tl) in natural units. The discontinuities become
visible only if the gravitational noise is reduced.
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Parameter Value Uncertainty
m 3× 10−10 kg 10−12 kg
M 3× 10−9 kg 10−11 kg
t 10−1 s 10−4 s
l 10−7 m 10−9 m
d [17, 54] cm 10−2 cm
A ≤ 4× 10−10 kg m−2

Ndp 100
N 106

Ttot 1 year
n [0, 10]

Table 6.1. The experimental parameters identified in section 6.4

6.5 Maintaining coherence
We saw in section 2.3 that a mass in superposition of paths will interact with the
ambient black body radiation and stray gas molecules in the imperfect vacuum
of the device. As the photons and molecules get entangled with the position
degrees of freedom of the mass, the coherence of the superposition is lost and the
phase cannot be recovered by observing interference between the two paths. These
unavoidable environmental sources of decoherence are well studied both theoretically
and experimentally [208, 217, 218]. Gravitational time dilation can also be a source
of decoherence for thermal systems [207], but requires much stronger gravitational
fields than considered in this experiment.

We assume the experiment will be performed with a nanoparticle of mass
m = 3× 10−10 kg, radius R = 30 µm. For the formulas appearing in this section we
refer the reader to [208].

Black-body radiation

The typical wavelength of thermal photons (≈ 10−5 m at room temperature) is
much larger than l, thus spatial superpositions decohere exponentially in time with
a characteristic time

τbb = 1
Λbbl2

, (6.62)

which is sensitive to the superposition size l. The factor Λbb depends on the material
properties of the mass as well as its temperature and that of the environment. If
the environment and the mass are at the same temperature T then the factor is

Λbb = 8!8ζ(9)
9π cR6

(
kBT

~c

)9
Re
[
ε− 1
ε+ 2

]2
+ 32π5

189 cR
3
(
kBT

~c

)6
Im
[
ε− 1
ε+ 2

]
, (6.63)

where ζ denotes the Riemann zeta function and ε is the dielectric constant of the
nanoparticle’s material at the thermal frequency. We take ε = 5.3 like that of
diamond [24] for the purposes of this estimation. Plugging in the radius of 30 µm of
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the masses under consideration and the superposition size 10−1 µm, we have

τbb ≈
2× 105 s
(T/K)9 . (6.64)

A coherence time of about 1 s, one order of magnitude above t of table 6.1, will
require the temperature to be below 4 K.

Imperfect vacuum

The thermal de Broglie wavelength of a typical gas molecule (≈ 10−10m for He at
4K) is many orders of magnitude below the superposition size l considered here,
thus a single collision can acquire full which-path information and entail full loss of
coherence. The exponential decay rate of the superposition is in this case independent
on the size l of the superposition, with a characteristic time

τgas =
√

3
16π
√

2π

√
2mgkBT

PR2 (6.65)

in a gas at temperature T , pressure P of molecules of mass mg. Assuming the gas is
entirely made of helium, and setting the highest possible value for the temperature
according to the previous section, we get

τgas ≈
10−17 s
P/Pa . (6.66)

Thus a coherence time of 10 t = 1 s requires a pressure of 10−17 Pa. This is a
regime of extremely low pressure and may present the most serious challenge for
any experiment that involves setting masses of this scale in path superposition. To
put things in perspective, pressures of the order 10−18 Pa are found in nature in
the warm-hot intergalactic medium [182], while the interstellar medium pressure is
at the range of 10−14 Pa [98]. On the other hand, pressures as low as 10−15 Pa at
4 K have been reported since the 1990’s in experiments employing cooling magnetic
traps [109, 110]. In a similar context to ours, the contemporary GME detection
proposals quoted above require pressures of 10−15 Pa at 0.15 K [34]. Finally, the
cryogenic requirements found in this section can be relaxed if the path superposition
can be achieved faster. From equations (6.53) and (6.54), if a stronger magnetic
field can be used this will require shorter coherence times.

6.6 Discussion of the hypothesis
At first sight, the hypothesis

δτ = n tP (6.13)

mimics the naïve picture of a tiny clock ticking at a constant rate, with a lapse tP.
This simple physical picture of the quantum mechanical phase as a sort of intrinsic
“clock” ticking at planckian time intervals is appealing in its simplicity and does not
depend on any particular model of quantum gravity. Thus, in our opinion, it is on
its own right worth being looked at.
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Whether this hypothesis is backed by a physical theory of time is unclear. In
the well corroborated fundamental paradigms of general relativity and quantum
mechanics, time is modelled as a continuous variable. However, in a UV completion
for quantum gravity, one can reasonably expect a modification of the notion of time
at planckian scale. We discuss two main avenues by which the continuous time can
become discrete:

A. Instead of a smooth spacetime, consider it instead an effective description on
large scales, that emerges from an underlying discrete lattice.

B. Promote time to a quantum observable with a discrete spectrum.

A. Most straightforwardly, (6.13) can be taken prima facie to arise from a kind
of classical time discreteness. Assuming that the notion of proper time τ of general
relativity becomes discrete in a linear sense, with regular spaced planckian time
intervals, then also differences of proper time δτ will display a similar behaviour,
from which (6.13) follows. This assumption is made for instance in the programme
of Digital Physics [276], which advocates that space may be nothing but a grid.

Of course, such a ‘classical’ discreteness would manifestly break Lorentz invariance.
It might be already possible to set upper bounds on the discreteness of time from the
limits set on Lorentz invariance violations by the study of the dispersion relations of
light [2, 5, 143, 181].

Before discussing possible implications of quantum theory, a comment on the
intermediate case of a classical but stochastic spacetime. For instance, if spacetime
can be described by a single causal set, stochastic fluctuations of planckian size in
proper times are to be expected [88, 216, 246]. Because of the statistical nature of
the time measurement proposed here, finding a continuous behaviour for δτ would
not necessarily exclude the possibility of a classical discreteness. It could just be
masked by stochastic fluctuations.

B. Turning to the quantum theory, the discreteness of time may appear as the
discreteness of the spectrum of some time operator. Contrary to general belief,
Pauli’s argument [196] has not ruled out the possibility of a time-operator but rather
stressed the subtlety of its definition [111].

There are two main candidates for being the relevant time observable here: the
proper time interval τ in each branch, and the difference of proper time δτ between
the branches. Then in both cases the question of which spectrum is to be expected
should be answered.

Equation (6.13) can be regarded as the assumption of the linearity of the spectrum.
For comparison, this is very different from the energy spectrum of the hydrogen
atom En ∝ −1/n2 but it is very similar to that of the harmonic oscillator En ∝ n. If
the spectrum of τ is linear, then so is the spectrum of δτ , which is what we assumed
in the main analysis with equation (6.13). It does not matter, in this case, whether
it is τ or δτ which is taken as the relevant quantum observable. On the contrary, for
a non-linear spectrum, this question is crucial. As said earlier, the assumption of
linearity is natural in the sense that it mimics the ticking of a clock, but it is not
really backed so far by any theory of quantum gravity.
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In Loop Quantum Gravity (LQG) the spectrum of the length, area and volume
operators are famously discrete [229]. Discreteness of time may arise in a similar
fashion from this theory, although nothing has been proven yet. There is also a debate
on whether discreteness in the spectrum of observables survives the implementation
of the hamiltonian constraint [87, 224]. The hypothesised linear behaviour is similar
to the spectrum of the area operator in LQG [230]

Aj = 8πγl2P
√
j(j + 1), j ∈ N/2, (6.67)

where γ is a fundamental constant called the Immirzi parameter. There are indica-
tions that length has a spectrum that goes as a square root progression in j [26].
Geometrically, we would expect time to behave similarly to a length. In such a
case, it will make all the difference whether the square-root behaviour applies to the
proper time itself

τ =
√
n tP, (6.68)

or the difference of proper time

δτ =
√
n tP. (6.69)

We first analyse the consequences of equation (6.68) on the visibility of the plateaux.
We work in planck units and take l � d according to the parameters of table 6.1,
although the same result can be obtained without this assumption. The proper
times τfar and τclose of the branch in which M and m are a distance d+ l and d apart
are given in terms of laboratory time according to general relativity by

τfar = t

√
1− 2M

d+ l
τclose = t

√
1− 2M

d
. (6.70)

These are very large compared to the planck time, as we are in the weak field regime
and t cannot be smaller than the period of the sharpest atomic clock. Let’s now
impose the discretisation (6.68)

τfar =
√
n+ k, τclose =

√
n (6.71)

where

n+ k =
⌊(

1− 2M
d+ l

)
t2
⌋

and n =
⌊(

1− 2M
d

)
t2
⌋
. (6.72)

Equation (6.13) is thus replaced by

δτ =
(√

n+ k −
√
n
)
tP. (6.73)

The condition l� d implies that k � n, so that the equation above simplifies to

δτ ≈ k

2
√
n
. (6.74)

So, a square-root behaviour for the spectrum of τ leads to a linear behaviour for
δτ . Unfortunately, the factor of

√
n in the denominator means that different values
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of δτ are exceedingly close to each other, making the experiment impossible in our
proposed setup.

We now consider the case (6.69). We have

n =
⌊(

t

β

)2
⌋
, (6.75)

so that

P h
′

+ = 1
2 + 1

2 sin

 m

mP

√√√√⌊( t
β

)2
⌋ . (6.76)

This behaviour is plotted next to that of the main hypothesis in figure 6.5. For small
values of t/β, the plot of P h′+ is the same as the one of P h+, studied in the previous
sections. For larger values of t/β, both the width of the plateaus and the steps
between them are smaller. Thus, the detection of such a discreteness is of similar
difficulty so long as t/β < 10.
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Figure 6.5. Plot of P+ as a function of t/β with an alternative hypothesis. We
take m = 10−2mP. Blue curve: δτ takes continuous values. Orange curve: δτ = n tP as
considered in the main text. Green curve: δτ =

√
n tP, as motivated from LQG in this

section.

6.7 Conclusion
In this chapter, we have devised an experiment that would probe a hypothetical
granularity of time at the planck scale. We have also carried out a feasibility analysis.
First, we have determined a set of constraints that would ensure the visibility of the
plateaux in the plot of the probability p+(t/β). These constraints are expressed as a
set of inequalities on the experimental parameters. Second, based on current claims
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in the experimental physics literature, we have shown that there exists a reasonable
range of parameters that satisfy the constraints. The obtained values are gathered
in table 6.1. Finally, we have determined the temperature and pressure conditions
required to avoid too fast decoherence.

Perhaps surprisingly, conclude that the proposed experiment is a feasible task for
the foreseeable future. In particular, it is of comparable difficulty to contemporary
experimental proposals for testing the non-classicality of the gravitational field.
Nevertheless it remains difficult, and will require pooling expertise in adjacent
experimental fields.

The possibility of probing planckian time without involving extremely high
energies may be a disturbing idea to many physicists. However, the history of
physics shows examples where scientists have gained knowledge at a physical scale
that was widely believed to be unreachable with the available technology at the time.
The first example is when Einstein proposes a way to measure the size of atoms by
observing the brownian motion of mesoscopic pollen grains [94]. Another example is
when Millikan shows that the electric charge comes in discrete packets, and measures
the charge of the smallest packet (the electron) [174, 175]. Again, such a feat was
realised through the observation of the mesoscopic motion of charged drops of oil.
In both cases, as in our proposal, the scale of discreteness was reached through
mesoscopic observables thanks to two leverage effects: an algebraic game involving
very small or very big constants and a statistical game involving the collection of
many events.

The importance of realising the proposed experiment lies primarily in the ground-
breaking implications of potentially discovering a granularity of time at the planck
scale. A negative result would also have significant implications, guiding fundamental
theory. Finally, an easier version of the experiment with relaxed constraints would
remain of profound interest, setting new bounds on the continuous behaviour of
time.
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Chapter 7

The arrow of time in
operational formulations of
quantum mechanics

Classical mechanics is invariant under time reversal: its elementary laws do not
distinguish past from future. The observed arrow of time is a macroscopic phe-
nomenon that depends on the use of macroscopic variables and the contingent fact
that the entropy defined by these variables was lower in the past. Is the same true
for quantum mechanics? On the one hand, the Schrödinger equation is time-reversal
invariant and so is quantum field theory (up to parity transformation and charge
conjugation). Elementary physics is time reversal invariant and the source of time
orientation is again macroscopic and entropic. Elementary quantum phenomena do
not carry a preferred arrow of time. On the other hand, as remarked in section 2.4.3,
the formalism of quantum theory is often defined in a markedly time oriented way.

In this chapter, we address this tension between the physics and the formalism.
We investigate the reason for the time orientation of the quantum formalism and
show that the tension can be resolved. The asymmetry in the formalism is due to
the inherent directionality in the process of inference, which is only indirectly related
to the arrow of time.

Let us start by noting that in any inferential problem there is an asymmetry
between what is known (the data) and what is unknown (the desiderata). Let us call
this directionality the arrow of inference. The arrow of inference is not necessarily
aligned with the entropic arrow of time. The arrow of inference may be pointed
towards the past as well as towards the future. Quantum phenomena are such
that we can only compute conditional probabilities, so quantum theory inherits the
asymmetry between data and desiderata.

Quantum theory allows us to compute the probability of future events from
past ones, but it also allows us to compute the probability of past events from
future ones. As we illustrate in detail below, quantum theory does not distinguish
between these two tasks. In contrast, the users of quantum theory are generally
more interested in predicting the future than postdicting the past. This is because
we live in thermodynamically oriented world that has abundant macroscopic traces
of the past but not of the future [211, 228]. And that is why, in most problems, the
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arrow of inference points in the same direction as the arrow of time. It is no surprise
that we have designed formulations of quantum theory that conflate the two arrows.
Nevertheless, ignoring the distinction can be a source of confusion.

We will focus on formalisms used in quantum information [68, 73, 183]. These are
designed to study information processing tasks and the correlations that agents can
achieve by sharing and manipulating quantum systems. As mentioned in chapter 2,
this approach has lead to a wealth of insights, both of theoretical and technological
value [16, 17, 21, 22, 32, 34, 56, 86, 96, 116, 122, 134, 164, 242, 267]. Of particular
interest are the information-theoretic reconstructions of quantum theory [57, 74,
124, 125, 132, 133, 146, 171, 187, 239] mentioned in chapter 3. These derive the
formal Hilbert space structure of quantum theory from simple physical principles.
With the notable exception of Ding Jia’s [146], the reconstructions either start
by considering a space of theories that is intrinsically time-oriented [74, 124, 125,
132, 133, 171] or introduce the time orientation explicitly as a postulate [57, 187,
239] (“no signalling from the future”). There is nothing wrong with time-oriented
formalisms designed1 to study time-oriented questions. However, the reconstruction
effort is often motivated by saying that a reconstruction can offer natural ways to
look for a generalisation of quantum theory. For example, it might aid in formulating
a theory of quantum gravity, in which the existence of a background spacetime
cannot be taken for granted [82]. While we do not know if quantum gravity will be a
time-reversal symmetric theory, it seems unwise to impose time-reversal asymmetry
on the onset, especially if motivated by laboratory physics, and not elementary
processes.

The argument of this chapter proceeds as follows. We start with the uncontro-
versial assumption that the Born rule yields prediction probabilities: conditional
probabilities for future events, given past ones. We apply standard probability
theory to find formulas for postdiction probabilities: probabilities about the past,
given the future. We do not need to postulate these probabilities: we derive them
from the prediction probabilities. In section 7.2, we show that for closed quantum
systems the probabilities for prediction and postdiction are identical, a property
we call inference symmetry. The Born rule can be used in both directions of time
without modification, contrary to what is sometimes stated. In section 7.3, we
discuss open quantum systems, where this symmetry is hidden. In that case, the
prediction and postdiction probabilities differ. However, the difference is dictated by
the asymmetries in the inferential problem, not by the arrow of time, once again
contrarily to what is often stated in the literature. Unitary quantum mechanics
is both time-symmetric and inference-symmetric. In section 7.4, we investigate
the same question for quantum channels, the more general evolutions featuring in
operational formulations of quantum theory used in quantum information. Quantum
channels are not, in general, inference-symmetric. Yet, by shifting the Heisenberg
cut to include part of the apparatus, we show that the inference-asymmetry of
quantum channels stems from asymmetries in the inferential data. In section 7.5, we
relate the tasks of postdiction with passive and active time-reversals, and discover

1During the development of this work, Schmid, Selby, and Spekkens [235], and Hardy [126] have
proposed formalisms in which the physical and the inferential aspects of a theory can be separated
and make space for time-symmetric physics. The arguments presented in this chapter can be seen
as an additional motivation for these new frameworks.
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that quantum channels can also be seen as shorthands for calculations about the
past. We combine all insights in section 7.6 to show that the asymmetries of the
quantum information formulations do not stem from an arrow of time intrinsic to all
quantum systems, but from the asymmetry inherent in the process of inference. The
time-asymmetry of the operational formalisms used in quantum information theory
is that of the time-oriented macroscopic agents that set up the experiments. At the
end of the chapter, we briefly discuss the time orientation of other formulations of
quantum mechanics.

In appendix A, we offer a brief review of the history of the subject of time-reversal
invariance in quantum theory; this allows to situate this chapter in a broader context.
This chapter is based on [83].

7.1 Prediction and postdiction
Quantum indeterminism is time-reversal invariant. In presenting the probabilistic
nature of quantum theory, we often emphasise that the future of a quantum system
is not entirely determined by its past. It certainly is true that the outcomes of
future interactions with a quantum system are uncertain, given the details of past
interactions. What is less often recognised is that the converse is equally true:
given the details of present interactions, the past ones are uncertain. This was
already pointed out a long time ago [95]: the irreducible indeterminism of quantum
phenomena cuts both ways, leaving both the past and the future uncertain, given
data about the present. This has well-known practical consequences, such as the
impossibility of deterministic state-discrimination and the no-cloning theorem [183]:
interactions with a quantum system do not allow us to guess with certainty how it
was prepared.

As we shall see below, the past of a quantum system is quantitatively as uncertain
as its future: the probabilities calculated using the Born rule can be applied to both
predict and postdict. Quantum theory, in fact, does not distinguish a priori the
tasks of prediction and postdiction and we might say that there is a fundamental
“unpostdictability” of the behaviour of quanta.

Let us operationally define what we mean by prediction and postdiction using
two related tasks. In both tasks, a friend prepares a quantum system in an initial
configuration, allows it to undergo a given transformation, measures it, and finds
it in some final configuration. The friend then gives us some information about
these events, and asks us to guess the rest. In the first task, we are asked to guess
the outcome of the measurement, given the initial configuration and the details
of the transformation and of the measurement. In the second task, we guess the
outcome of the preparation, given the outcome of the measurement, the details of
the transformation, and the set of possible initial states.

Definition 1 (Prediction task) Given a preparation, a map, a test, and the out-
come of the preparation, compute the probabilities for the outcomes of the test.

Definition 2 (Postdiction task) Given a preparation, a map, a test, and the
outcome of the test, compute the probabilities for the outcomes of the preparation.
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These are inferential2 tasks, in which we use the available information to make
educated guesses. The two tasks share the same physical process, the only difference
between the two is inferential.

While the setting of these tasks might appear artificial at first, a moment of
thought reveals that it serves as a useful shorthand for physically relevant situations.
In fact, postdiction has been extensively studied before [11, 12, 101, 198] and has a
number of practical applications; see [219, 247, 268] and references therein.

In the following, we study the relation between these two tasks, as it captures
the role played by the arrow of time in quantum theory. First, we consider the case
of closed systems, namely when the system under consideration is isolated between
preparation and observation. Then we consider open systems, namely when we
ignore some degrees of freedom, such as environmental degrees of freedom. Finally,
we extend the analysis to the more general case in which the notions of preparation,
evolution and measurement are subsumed in the more general idea of operation used
in quantum information and quantum foundations.

7.2 Closed systems
In this section, we assume that the friend prepares the system by determining the
values of a maximal set of compatible observables and does the same at observation.
We also assume that the system under consideration is isolated between preparation
and observation. Therefore, the preparation and test are represented by orthonormal
bases of the Hilbert space associated with the quantum system and the transformation
is represented by a unitary transformation. We will relax these assumptions in
following sections.

In this case, the Born rule is equally good for predicting the future given the
past and postdicting the past given the future [259]. Since this fact is not universally
known, we derive it assuming only the uncontroversial fact that the Born rule can
be used to predict the future.

We denote by {ai}di=1 and {xi}di=1 the bases of the preparation and test, respec-
tively (although we drop the basis indices when they are not strictly needed, to keep
the notation cleaner). The solution to the prediction task with the unitary evolution
U , and the outcome of the preparation a is given by the Born rule: the probability
for the outcome x of the test is

Ppre(x|a, U) = |〈x|U |a〉|2. (7.1)

The solution to the postdiction task is obtained from the solution of the prediction
game and standard probability theory. By Bayes’ theorem

Ppost(a|x, U) = Ppre(x|a, U)P (a)
P (x) , (7.2)

2We adopt a broadly bayesian understanding of probability in this chapter. Probabilities represent
beliefs about the situation at hand, given the data; quantum-mechanical transition probabilities are
thought as the best guide for inference. The latter belief is justified by the theory’s success. If we
want to think of probabilities in frequentist terms instead, we can imagine the friend repeating the
setup many times, ensuring a uniform distribution in the initial or final configuration and interpret
the calculated probabilities as relative frequencies of outcomes in an ensemble of trials, in the limit
of infinite trials.
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where P (a) is the prior probability on the initial configuration and P (x) is the
probability of the final configuration given the prior. Since all we know in the
postdiction task is the basis of the preparation, we have

P (ai) = 1
d

(7.3)

for all i = 1, . . . , d. The a priori probability of the outcome of the test is computed
summing over all possible initial states:

P (x) =
d∑
i=1

1
d
Ppre(x|ai, U) = 1

d
, (7.4)

where we used the fact that the evolution is unitary. The postdiction probability is
then computed from (7.2):

Ppost(a|x, U) = | 〈x|U |a〉 |2 = Ppre(x|a, U), (7.5)

pictorially,

Ppre(x|a, U) = U

a

x

= Ppost(a|x, U). (7.6)

Thus for a closed quantum system, the solution to the prediction and postdiction
tasks is given by the same formula.

Note that the flat prior (7.3) is crucial in the derivation above; had the prior
been different, the postdiction probabilities would be different from the prediction
probabilities. However, assuming a different prior would introduce an inappropriate
asymmetry between the two tasks. Our objective is to treat the prediction and
postdiction tasks on equal footing. When we predict the result of a measurement
using the Born rule, we do not assume any prior knowledge on the result of the
experiment besides the space of alternatives. Therefore, in a postdiction task we do
not assume any prior knowledge of the result of the preparation besides the space of
alternatives, hence the flat prior. The flat prior does not imply that the input system
was prepared in the maximally mixed state, it is simply the probability distribution
that represents the prior knowledge in the postdiction task.

For a system evolving unitarily between the preparation and the observation
events, later events are uncertain given the earlier event and earlier events are
uncertain given later events, and the probabilities are given by the same formula.
The Born rule does not distinguish the past from the future: it allows to calculate
the probability of an event given another event, no matter their order in time.

Let us formalise this property:

Definition 3 (Inference symmetry) A transformation Φ is inference symmetric
if, for any two orthonormal bases {ai}dAi=1 and {xi}dXi=1 for the input and output spaces
respectively, the prediction and postdiction probabilities are identical:

Ppre(xi|aj ,Φ) = Ppost(aj |xi,Φ) (7.7)
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Quantum unitary evolution is inference-symmetric. Why is this time-symmetric
aspect of unitary evolution rarely emphasised?

In most practical situations, we don’t need to use the flat prior when guessing
the past. We can do better, because there are macroscopic traces of the past, like
our memories or entries in a notebook. Additionally, in most laboratory experiments,
the initial distribution is known or chosen so that frequency of events in the ensemble
is far from uniform.

The fact that macroscopic traces are records of the past and not the future and
the fact that an experimenter’s choice can affect the future and not the past are both
macroscopic phenomena that pertain to the irreversible physics of the macroscopic
world surrounding the experiment [227, 228], not to the quantum dynamics, which
by itself does not know the arrow of time.

Some authors go so far as to say that the Born rule does not work ‘backward in
time’ and see it as a fundamental asymmetry in the theory [192] and that quantum
theory needs to be modified, or extended, to make it symmetric. But this is too
quick. If we do not assume any knowledge or bias in the past, (7.5) is indeed the
correct formula to use according to quantum theory. In turn, the validity of the
Born rule in predicting the future relies on the same assumptions about the future.
Namely, if we did have some knowledge of the future, then (7.1) would not be the
best formula to make predictions. For example, if the detector does not detect
certain states, the Born rule fails.

The presence of records of the past is not a property of quantum theory per
se, or of the behaviour of a single quantum, but a property of what surrounds the
quantum. See also [4, 259] for early examples of this argument.

7.3 Open systems
Let us now consider the case when the system we deal with is not isolated. An open
quantum system can always be seen as a part of a larger closed quantum system.
To study this case, consider a tensor decomposition of the input A⊗B and output
X ⊗ Y Hilbert spaces. The tasks we consider now regard computing probabilities
restricted to some of these subspaces. Denote by dA, dB , dX and dY the dimensions
of the respective spaces and with {ai}, {bi}, {xi}, and {yi} bases on them. The
evolution between input and output space is represented by the unitary U . By
the results of the previous subsection, this process is inference-symmetric with the
solution

Ppre(xy|ab, U) = | 〈xy|U |ab〉 |2 = Ppost(ab|xy, U). (7.8)

Suppose that we agree with our friend to ignore the subspace Y of the outcome
space and compute only the probability of finding x as the outcome of the test
on X. This simulates the situation in which our system gets entangled with some
other system that is subsequently ignored, like when information leaks into the
environment. Note that the difference between a closed and an open system is in
the inferential data, not in the physical system. We can solve the prediction task by
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computing the marginal probability

Ppre(x|ab, U) =
dY∑
i=1

Ppre(xyi|ab, U), (7.9)

where we sum over the space Y we decided to neglect. Similarly we solve the
postdiction task with the same unitary evolution, with only knowledge on the
outcome of the test on the space X, weighting the original postdiction probabilities
with a flat prior:

Ppost(ab|x, U) =
dY∑
i=1

1
dY
Ppost(ab|xyi, U). (7.10)

We can use the inference symmetry of the closed system (7.8) to relate the two
expressions above:

Ppost(ab|x, U) = 1
dY
Ppre(x|ab, U). (7.11)

Thus the prediction and postdiction probabilities are no longer equal once part of
the output system is ignored.

Suppose now that we agree with our friend to neglect the B part of the input
space. This corresponds to the situation in which a system in an unknown state
interacts with our original system. Again, the difference is in the inferential data,
not the physical setup. The prediction probabilities are obtained by assigning a flat
prior to the system B:

Ppre(xy|a, U) =
dB∑
i=1

1
dB
Ppre(xy|abi, U), (7.12)

while the postdiction probabilities are

Ppost(a|xy, U) =
dB∑
i=1

Ppost(abi|xy, U). (7.13)

The two are again related using (7.8):

Ppost(a|xy, U) = dBPpre(xy|a, U). (7.14)

Again, the two probabilities are different.
We can similarly analyse the case where we agree with our friend to neglect the

result of the preparation in B and the outcome of the test on Y , which simulates a
situation in which the system is open to influences from an unobserved quantum
system. The prediction and postdiction probabilities again differ by a simple
normalisation constant:

dY Ppost(a|x, U) = dBPpre(x|a, U). (7.15)

Note that the probabilities are equal only when dB = dY , so that A ≡ X. When the
input and output spaces are treated symmetrically, prediction and postdiction tasks
are symmetric.
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Crucially, the normalisation factor that makes the two kinds of probabilities
different does not depend on time: if we neglect a subsystem B at time t1 and
another system Y at time t2, then the probabilities for the values at t2 given the
values at t1 are dY /dB times the probabilities of guessing the values at t1 given the
values at t2. This has nothing to do with a pre-established direction of time. Indeed,
it is true regardless of whether t1 < t2 (as in the example above) or t1 > t2.

In the general case, the asymmetry between the prediction and postdiction
tasks arises because of an asymmetry in the inferential data, not because of an
intrinsic asymmetry in the physics or the evolution of the system. Indeed, in all
these cases, the underlying process U is inference-symmetric. The inferential tasks
are asymmetric only when the inferential data are asymmetric.

The normalisation of the identity is determined by the arrow of
inference

We can rephrase all the probability calculations above in terms of density operators.
Under unitary evolution a density operator transforms as ρ 7→ U [ρ] := UρU †. A
pure state ψ can be represented as a density operator by the projector |ψ〉〈ψ| and
the Born rule can be recast as a trace

|〈xy|U |ab〉|2 = tr
(
|xy〉〈xy| U [|ab〉〈ab|]

)
. (7.16)

Let us start with prediction, the more familiar task. In this language the prediction
probability (7.9) can be rewritten as

Ppre(x|ab, U) =
dY∑
i=1

Ppre(xyi|ab, U)

=
dY∑
i=1

tr
(
|xyi〉〈xyi| U [|ab〉〈ab|]

)
Ppre(x|ab, U) = tr

(
(|x〉〈x| ⊗ IY ) U [|ab〉〈ab|]

)
.

(7.17)

The decision to ignore part of the output system is represented by the insertion
of the identity operator IY , which in this role is called the discard operator of the
subsystem Y . This is the classic technique of ‘tracing out’ a subsystem to ignore its
future. Equation (7.12) can be similarly recast as

Ppre(xy|a, U) = tr
(
|xy〉〈xy| U

[
|a〉〈a| ⊗ 1

dB
IB
])

, (7.18)

where the flat prior is represented by the maximally mixed state, the density
operator IB/dB. This is also the well known result of doing prediction based on
partial information. Note that the two formulas above make it clear that the choice
of basis of the ignored system is irrelevant to the computed probabilities.

Let us now look at the postdiction probabilities. Using the two equations above
together with (7.11) and (7.14), we can immediately write

Ppost(ab|x, U) = tr
((
|x〉〈x| ⊗ 1

dY
IY
)
U [|ab〉〈ab|]

)
, (7.19)

Ppost(a|xy, U) = tr
(
|xy〉〈xy| U [|a〉〈a| ⊗ IB]

)
. (7.20)
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We see that the identity operator appears again in the ignored systems. However,
the normalisation is the opposite of the predictive case.

The discard operator and the maximally mixed state are well known, and
are normally only applied to the output and input side respectively. But the
normalisation of the identity operator does not reflect the direction of time, the
past or the future, input or output. It reflects the direction of inference. This is
particularly obvious rewriting in the pictorial calculus:

Ppre(x|a, U) = U

x

a
1
dB

Ppost(a|x, U) = U

x

a

1
dY

(7.21)

with and representing the identity operator as an output and input respectively.
We discard in the direction we guess, and we have the maximally mixed state on the
side of the data.

Thus, the way the inference-symmetry appears to be broken in open systems
reflects an asymmetry on the inferential data that is, a priori, independent on the
direction of time. An example illustrates why it is natural that the normalisation
depends on the direction of inference and is independent on the direction of time.
Consider a system evolving with the identity, i.e. nothing happens to it. If we are
told the state a of the system and we are not asked to guess anything, then all the
probabilities are trivially 1 = tr |a〉〈a|. Conversely, if we are only told the system is
in one state out of a orthonormal basis, then the probability that it is in a given
state a is 1

d = 1
d tr |a〉〈a|. When we don’t guess, all the probabilities are 1; when

we are told to guess but we have no clue, our only option is to assume a uniform
distribution. This is true regardless of whether we are predicting or postdicting

We often use quantum theory to predict, which is why we generally associate the
normalisation factor 1/d to the identity operator in the input space. In practice, we
are normalising our data. If we were postdicting, we would associate the normalisation
factor to the identity in the output space. The operator I/d does not represent
a physical fact, but the probability distribution we use to weight the conditional
probabilities computed with quantum theory.

The results of these two sections show that the irreducible quantum uncertainty
applies equally to both directions of time. Indeed, when dealing with a closed
quantum system, the Born rule gives both the prediction and postdiction probabilities
directly. When the prediction and postdiction probabilities differ, they do so because
of an asymmetry in the inferential data.

7.4 Quantum operations
The transformations considered above might seem limited in scope to researchers in
quantum information and quantum foundations. As we have seen in chapters 2 and
3, in these communities the notions of preparation, evolution, and measurement are
subsumed by the more general notion of operation, which reflects their more elaborate
needs: a more coarse-grained description of quantum processes, independent on the
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underlying dynamics, the capacity of melding classical and quantum information
processing, dealing with classical uncertainty and so on. However, since agents
and labs are made of atoms and photons, and the interactions between atoms and
photons is satisfyingly described by the unitary evolution and pure state approach,
the results of the previous section have bearing on quantum operations too.

After a brief survey of the notion of quantum operation, we solve the prediction
and postdiction tasks for a general quantum channel and explain their postdiction
asymmetry.

7.4.1 Operations

Let us quickly remind ourselves of the notion of operation to fix some We also take
the opportunity to note that this notion is time oriented by design and recall how it
relates to the more basic notions.

An operation OA→X , also known as an instrument, from an input Hilbert space
A to an output Hilbert space X is represented is a set {Oi} of completely positive
(CP) trace non-increasing linear maps (aka quantum maps) from the space L(A)
of linear operators on A to L(X), satisfying the completeness equation (aka the
causality condition):

∀ρ ∈ L(A) :
∑
i

trOi[ρ] = tr ρ. (7.22)

An operation OA→X = {Oi} also defines a completely positive, trace-preserving
(CPTP) map ρ 7→ O[ρ] :=

∑
iOi[ρ]. When the operation OA→X is applied to a

system in state ρ, the outcome i happens with probability given by the generalised
Born rule

P (i|ρ,O) = trOi[ρ], (7.23)

and the state of the system after this outcome is

ρi = Oi[ρ]
trOi[ρ] . (7.24)

We have already remarked that the completeness requirement (7.22) amounts to a
statement of the conservation of probabilities. If the outcome i is unknown, then
the state of the system is a mixture of the states above, weighed by the relevant
probability:

O[ρ] =
∑
i

P (i|ρ,O)ρi =
∑
i

Oi[ρ]. (7.25)

If the output space of an operation OA→X coincides with the input space of another
operation MX→Y , these two operations can be sequentially composed forming a
new operation (M◦O)A→Y = {Mj ◦Oi}. If the state of the input system is ρ, the
probability of the outcome ij is

P (ij|ρ,M◦O) = trMj [Oi[ρ]]. (7.26)

Operations can also be composed in parallel using the tensor product structure of
the underlying Hilbert spaces.

A preparation of a system associated with a Hilbert space A is an operation
PI→A. By a simple mathematical isomorphism, quantum maps from I to A can
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always be associated with positive linear operators on A, so that any preparation
can be represented by a subset {ρi} ⊂ L(A) such that

∑
i tr ρi = 1. Above, we

have considered only preparations of the form {|ai〉〈ai| /dA}dAi=1, where {ai} is an
orthonormal basis for A.

A test on the same system is an operation T A→I from the Hilbert space A to
the trivial Hilbert space. By the isomorphism above, and the Riesz representation
theorem, tests are often also represented by a collection of positive operators {σj} ⊂
L(A), such that

∑
j σj = IA with their actions on the state given by ρ 7→ trσjρ.

An operation ΦA→X with a single outcome is also called a quantum channel, and
is represented by a CPTP map. Quantum channels are also called deterministic
quantum maps, as they have only one outcome. Above, we considered only unitary
quantum channels, of the form ρ 7→ UρU †, but much more general ones are possible.

A preparation with a single outcome is also called a state. States are by definition
represented as unit-trace positive operators, i.e. density matrices. A test with a
single outcome is also called a deterministic effect. There is only one deterministic
effect, represented by the identity operator.

Note that this formalism is time-asymmetric by construction. The time asymme-
try shows up in two ways, reminiscent of the Copenhagen-type interpretations. First,
the outcomes {i} depend probabilistically on the state of the system in the past:
the probabilities calculated in this setting are invariably prediction probabilities.
Second, the state of a system at any point in time reflects events in the past, and it
is independent of the events in the future. The only data assumed to be available is
data about the past.

The spaces of states and effects are not isomorphic. This was identified as the
main source of time-asymmetry of operational quantum theory in [192], where it
was proposed to enlarge the space of effects by not requiring that operations sum to
trace-preserving maps. However, from the perspective of this chapter, we understand
this asymmetry between states and effects as being the difference between known
and unknown in the process of inference. Preparations represent our assumptions in
the inferential problem, while tests represent the different propositions about the
unknowns. There is no need to remove the distinction between preparations and
tests to make quantum theory time-symmetric, all is needed is to recognise that
operational quantum theory is geared for prediction: a situation where the data is
in the past of the unknowns.

Operational quantum theory is connected to the simpler setting of pure states and
unitary evolutions by the concept of purification. Any quantum channel ΦA→X can be
purified [250], meaning it can be represented by a unitary channel UΦ : A⊗B → X⊗Y
and a pure state b for system B such that

∀ρ ∈ L(A) : Φ[ρ] = trY UΦ[ρ⊗ |b〉〈b|]. (7.27)

In other words, any quantum channel can always be understood as a unitary
interaction with an ancilla quantum system prepared in a specific way and where
part of the output is ignored. In fact, any operation OA→X = {Oi} can be purified
[193], meaning that it is mathematically equivalent to a unitary evolution of the
system A in the presence of an ancilla B, in which part of the output system is ignored
and part of it is measured on an orthonormal basis. That is, there exists a unitary
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operator UO on the Hilbert space A⊗B and a decomposition A⊗B ≡ X ⊗ Y ⊗ Z
and a pure state |b〉〈b| ∈ L(B) such that

∀ρ ∈ L(A), ∀i : Oi[ρ] = trY Z
(
(|i〉〈i|Y ⊗ IZ) ◦ UO[ρ⊗ |b〉〈b|]

)
, (7.28)

where i now labels an orthonormal basis of the Hilbert space Y . This is one of the
cases where the pictorial language is definitely clearer:

=Oi UO

b

i

. (7.29)

It is a well-known property of quantum theory that one can always shift the
Heisenberg cut to include part of the apparatus in the quantum system under
description. This is the physical content of the two mathematical results above.
The label i that distinguishes the various outcomes of the operation O is now seen
as labelling the possible values of a pointer variable, a part of the apparatus that
gets entangled with the system and that, when observed, allows the determination
of the state of the system. If one cared enough, one could model every quantum
operation explicitly in these terms. But countless purifications are consistent with
the same operation, and these low-level details are not important when one is only
interested in the effect on the given quantum systems. Quantum operations are
useful shorthand.

7.4.2 Prediction and postdiction with quantum channels

Now, let us solve the prediction and postdiction tasks using the generalised Born
rule, similarly to how we did for closed quantum systems. Unitary evolution is
replaced by a CPTP map Φ. The input and output spaces are A and X respectively,
which do not need to be isomorphic. Preparation and measurement are performed
on bases {ai}dAi=1 and {xi}dXi=1. The solution of the prediction task is given by the
generalised Born rule:

Ppre(x|a,Φ) = tr |x〉〈x|Φ[|a〉〈a|]. (7.30)

The solution to the postdiction task is found again by Bayesian inversion

Ppost(a|x,Φ) = Ppre(x|a,Φ)P (a)
P (x) . (7.31)

Assigning a flat prior for P (a), we can compute the probability of the data

P (x) =
dA∑
i=1

1
dA
Ppre(x|ai,Φ) = tr |x〉〈x|Φ

[ 1
dA

IA
]
, (7.32)

which this time is not uniform. Equation (7.31) then becomes

Ppost(a|x,Φ) = tr |x〉〈x|Φ[|a〉〈a|]
tr |x〉〈x|Φ[IA] . (7.33)
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This formula was also derived in [12]. At first, it looks quite different from the formula
for the prediction probabilities. However, it is also a remarkably simple solution.
Note that the postdiction probabilities are related to the prediction probabilities by
a simple multiplicative factor

Ppost(a|x,Φ) = fΦ(x) · Ppre(x|a,Φ), (7.34)

where

fΦ(x)−1 =
dA∑
i=1

Ppre(x|ai,Φ) = tr |x〉〈x|Φ[IA]. (7.35)

For a given measurement outcome x, the prediction probabilities are proportional to
the postdiction probabilities, up to a fixed normalisation factor fΦ(x). Once one
has calculated the set of prediction probabilities, one already has the postdiction
probabilities, up to this normalisation factor.

Inference symmetry is thus broken in general, and this seems to support the
idea there is a fundamental difference between the past and the future in quantum
theory. But it is broken in a simple way, reminiscent to the situation in the previous
section when we were concerned with partial data in a closed system. Indeed, when
we “look under the hood” using purification, we see that this is essentially what is
going on. From the purified point of view, there is an asymmetry between inputs
and outputs because the purifying ancilla’s state is assumed known in input and
ignored in output.

7.4.3 Purified task

Let Φ be a quantum channel from Hilbert space A to Hilbert space X. Then there
exists a unitary channel UΦ : A⊗B → X ⊗ Y and a pure state b for system B such
that

Φ[|a〉〈a|] = trY UΦ[|a〉〈a| ⊗ |b〉〈b|]. (7.36)

The prediction probabilities for Φ are, by definition, just those of the corresponding
pure open system:

Ppre(x|a,Φ) = Ppre(x|ab, UΦ), (7.37)

as given in (7.9). However the same is not true for postdiction since, in general,

Ppost(a|x,Φ) 6= Ppost(ab|x, UΦ). (7.38)

This is readily explained by the fact that the initial state of the ancilla is assumed
known, or “held fixed.” Since we know the ancilla’s input state is b, the probability
of the data is in fact

P (x) = Ppre(x|b, UΦ). (7.39)

Thus, by Bayes’ theorem,

Ppost(a|x,Φ) = Ppre(x|ab, UΦ)
dAPpre(x|b, UΦ) = Ppre(x|a,Φ)

dAPpre(x|b, UΦ) , (7.40)

which indeed immediately translates to (7.33).
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We now have a different perspective on the normalisation factor fΦ(x): it
quantifies the implicit knowledge about the input ancilla system and how this
knowledge affects the postdiction task. The specification of the quantum channel
Φ contains information about the past of the purifying system system so that
postdiction on the quantum channel Φ is equivalent to postdiction on the purified
system but with some added information about the input system.

Indeed, we can arrive at the same formula by using the postdiction probabilities
for the purified open system and the simple formula P (a|b) = P (ab)/P (b). Indeed
one can verify that

Ppost(a|x,Φ) = Ppost(ab|x, UΦ)
Ppost(b|x, UΦ) , (7.41)

by using (7.11) and (7.15).
While we have used an arbitrary purification, the two equations above hold for

any purification of the quantum channel Φ. So, whatever the physically appropriate
purification might be, the lesson is the same: the inference asymmetry for a quan-
tum channel derives not from an asymmetry of quantum mechanics, but from an
asymmetry in the questions asked.

7.4.4 Inference-symmetric channels

We have seen that not every quantum channel is inference-symmetric. Thanks to
the solution (7.33) to the postdiction task in the case of a general quantum channel,
we immediately see that a channel Φ is inference-symmetric if and only if fΦ(x) = 1
for all pure states x, namely, if and only if it is identity-preserving:

Φ[IA] = IX . (7.42)

Since quantum channels are trace-preserving, it follows that the input and output
spaces are isomorphic. The trace and identity preserving maps are known as the
bistochastic quantum maps or unital channels [151, 172], and they are the free
operations of the resource theory of quantum thermodynamics [59] with trivial
hamiltonians, and the resource theory of purity [251].

Every unitary channel is obviously bistochastic. The noisy operations:

ρ 7−→ trB U
[
ρ⊗ 1

dB
IB
]
. (7.43)

form a strict subset of the bistochastic channels [59, 243]. A noisy operation
represents the evolution of a system that undergoes unitary interaction with an
ancilla about which nothing is known. These channels are exactly those that are
simulated by the tasks considered in the previous section when Y ≡ B and both Y
and B are left out of the task.

Since the bistochastic channels are the only channels that admit an active
time-reversal [55], the equivalence of inference-symmetry and bistochasticity further
connects inference-symmetry and time-reversal invariance, as we will see in the next
section.
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7.4.5 More general preparations

Until now, we limited the preparation to the random element of an orthonormal basis.
The reason we considered this is that it reflects the simplest way to interact with a
system, namely, to couple to one of its non-degenerate observables. But what if our
friend tells us that they prepared one out of n, not necessarily orthogonal, states?
We now show how such a situation can also be accounted for using purification. It
is possible to skip to the next section without losing continuity with the rest of the
chapter.

Say the set of possible initial states states is {ψi}ni=1, in the d-dimensional Hilbert
space A, let U be the unitary evolution and {xj}dj=1 the orthonormal basis of the
measurement. Then the prediction probabilities are

Ppre(x|ψi, U) = | 〈x|U |ψi〉 |2. (7.44)

The postdiction probabilities are again found by Bayes’ theorem:

Ppost(ψi|x, U) = Ppre(x|ψi, U)P (ψi)
P (x) . (7.45)

Since we are only told the set of possible states, we assume a flat prior over them:

P (ψi) = 1
n
, (7.46)

and then the probability for the outcome is

P (x) =
n∑
i=1

1
n
| 〈x|U |ψi〉 |2 = tr (|x〉〈x|U [ρA]) (7.47)

where we have defined ρA :=
∑
i |ψi〉〈ψi| /n. And thus

Ppost(ψi|x, U) = Ppre(x|ψi, U)
n tr (|x〉〈x|U [ρA]) . (7.48)

So the prediction and postdiction probabilities are in general different if the space of
possible initial configurations does not represent an orthonormal basis.

We can understand this asymmetry again in terms of implicit knowledge. Let B
be a n-dimensional Hilbert space, and {bi}ni=1 an orthonormal base for it. Choose
an orthonormal basis {ai}di=1 on A and find a unitary UP on A⊗B that maps:

UP : |a1〉 ⊗ |bi〉 7−→ |ψi〉 ⊗ |bi〉 . (7.49)

Also define the unitary U ′ : A⊗B → X ⊗B given by

U ′ = (U ⊗ IB) ◦ UP . (7.50)

We can relate the prediction and postdiction probabilities for these two games. For
prediction we have:

Ppre(x|ψi, U) = Ppre(x|a1bi, U
′) (7.51)



7.4 Quantum operations 111

since, for an arbitrary basis {yi}ni=1 of B:

Ppre(x|a1bi, U
′) =

n∑
j=1
〈xyj |U ′|a1bi〉

=
n∑
j=1
| 〈xyj |U ⊗ IB|ψibi〉 |2

= | 〈x|U |ψi〉 |2 ·
n∑
j=1
| 〈yj |bi〉 |2

Ppre(x|a1bi, U
′) = Ppre(x|ψi, U),

(7.52)

where we have used the definitions of U ′ and UP to obtain the second equality.
For postdiction we have

Ppost(ψi|x, U) = Ppost(a1bi|x, U ′)
Ppost(a1|x, U ′)

, (7.53)

which is entirely analogous with (7.41). The proof is just a matter of expressing
nominator and denominator in terms of probabilities for the original task:

Ppost(a1bi|x, U ′) = 1
n

n∑
j=1

Ppost(a1bi|xyj , U ′)

= 1
n

n∑
j=1

Ppre(xyj |a1bi, U
′)

= 1
n
Ppre(x|a1bi, U

′)

Ppost(a1bi|x, U ′) = 1
n
Ppre(x|ψi, U)

(7.54)

and so
Ppost(a1|x, U ′) =

n∑
i=1

Ppost(a1bi|x, U ′)

=
n∑
i=1

1
n
Ppre(x|ψi, U)

Ppost(a1|x, U ′) = tr (|x〉〈x|U [ρA]) .

(7.55)

Thus, cases where we have more general preparations can be understood in terms
of preparations on orthonormal bases. From (7.53), in analogy with (7.41), that
the preparation of non-orthonormal states contains some implicit information about
an ancilla system that allows to prepare the non-orthogonal states. Again, we see
that in this purified game, the only way to achieve postdiction probability 1 is to
marginalise over bi, i.e. not guess at all.

This method can be further generalised to the preparation of an arbitrary set of
density operators by adding a purifying system that gets traced over in the prediction
task, and is assigned a flat prior in the postdiction task. The asymmetry again can
be understood as an asymmetry in the assumed knowledge in the tasks.
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7.5 Relation between time-reversal and postdiction
We have explored the symmetry between guessing the future and guessing the past.
For a closed system, the past is quantitatively as uncertain as the future, in the
sense that the Born rule can also be used, without modification, to guess a past
event based on information about a future event. In the case of a general quantum
channel, this symmetry is broken: the prediction and postdiction probabilities are
given by different formulas. However, the reason for this is that the implementation
of a general quantum channel requires the preparation of an ancilla system in a given
state, so that knowing a channel was implemented confers information about the
input system, breaking the symmetry between prediction and postdiction. Quantum
probabilities by themselves have no regard for the direction of time.

In this section, we examine another way in which the quantum probabilities do
not distinguish between past and future by examining the more familiar notion of
time symmetry: that of time-reversal symmetry. There are two notions of time-
reversal, which we could call active and passive, or operational and descriptive. In
the passive time-reversal of a system, one simply examines the changes in the system
in the reverse order, starting from the future and moving towards the past. Applying
passive time-reversal to the inference tasks we have been considering amounts to
switching from the prediction task to the postdiction task and vice versa. The
previous sections have thus been an investigation of passive time-reversal symmetry;
we proved that passive time-reversal symmetry is equivalent to inference-symmetry.
Active time-reversal consists instead in finding a process that undoes the change
that was brought by a previous transformation. In the context of the inference tasks,
active time-reversal consists in considering a new, time-reversed task.

7.5.1 Time-reversed task with unitary channel

Unitary maps are invertible, and thus for every evolution U of a closed quantum
system, there exists a time-reversed evolution given by the adjoint U †.

Definition 4 (Time-reversed task) Consider a task in which a closed system is
prepared in a basis {ai}di=1 and measured in a basis {xi}di=1 after undergoing the
unitary evolution U . In the time-reversed task, the system is prepared in {xi}di=1
and measured in {ai}di=1 after undergoing the evolution U †.

It follows immediately from the properties of the inner product that

Ppre(a|x, U †) = Ppre(x|a, U). (7.56)

While this is result is trivial to derive, it is nevertheless profound, as it compounds
with the inference symmetry

Ppre(x|a, U) = Ppost(a|x, U), (7.57)

to show how little regard the probabilities of closed quantum systems have about
the direction of time. Indeed, given two pure states a and x of the corresponding
Hilbert spaces, the same quantity | 〈x|U |a〉 |2 is the solution for four conceptually
distinct tasks:
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• Ppre(x|a, U), for the prediction task with unitary evolution U ,
• Ppost(a|x, U), for the postdiction task with unitary evolution U ,
• Ppre(a|x, U †), for the prediction task with unitary evolution U †, and
• Ppost(x|a, U †), for the postdiction task with unitary evolution U †.

The familiar Born rule, which is normally thought to apply only to the first case,
actually applies to all four of these cases. In each one of them, x can be either the
future or the past event, and can either be the known or unknown in the scenario.
The situation may be represented by the following diagram:

Ppre(x|a, U) �
active - Ppre(a|x, U †)

| 〈x|U |a〉 |2

Ppost(a|x, U)

passive

?

6

�
active

- Ppost(x|a, U †)

passive

?

6

Let us now consider the case of open systems and study the time-reversed version
of the tasks examined in section 7.3. If we neglect the outcome of the measurement
on B, we can write:

Ppre(a|xy, U †) =
dB∑
i=1

Ppre(abi|xy, U †) (7.58)

=
dB∑
i=1

Ppre(xy|abi, U) (7.59)

Ppre(a|xy, U †) = Ppost(a|xy, U), (7.60)

where we have used the time-reversal symmetry (7.56) in the second equality, and
(7.11) in the third. This equation relates the probability of the prediction task to the
probability of the time-reversed postdiction task. In both cases, we are calculating
the probability of event a based on knowledge of event xy. However, in one case xy
is to the past of a and in the other case the opposite is true. In a similar fashion, we
can derive the following equations:

Ppre(ab|x, U †) = Ppost(ab|x, U), (7.61)
Ppost(xy|a, U †) = Ppre(xy|a, U), (7.62)
Ppost(x|ab, U †) = Ppre(x|ab, U), (7.63)

for when only one side is being ignored, as well as

Ppre(a|x, U †) = Ppost(a|x, U), (7.64)
Ppost(x|a, U †) = Ppre(x|a, U), (7.65)

for when data is being ignored on both sides. Recall the discussion in section 7.3
about the normalisation of the identity that is required to calculate the quantities
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on the right hand side. The same applies here, which reinforces the lesson: the
direction of time is irrelevant to the normalisation of the identity. What matters is
the direction of inference:

Ppre(x|a, U) = U

x

a
1
dB

= U

a

x

1
dB

= Ppost(x|a, U †). (7.66)

The equation above3 refers to inference tasks in which we have information about
the system A and want to guess something about the system X. It does not matter
if A is in the past or the future of X. The answer is the same. There is no way of
telling which way the arrow of time is pointing.

7.5.2 Time-reversed task with quantum channel

The natural candidate for the time-reversed task is the one with the adjoint Φ† of
the quantum channel Φ. In fact, Chiribella et. al. proved that this is essentially the
unique way of defining the active time-reversal of a quantum channel in a way that
reduces to the adjoint when applied to unitaries [55, 58]. We must distinguish two
cases, as the adjoint of a CPTP map may or may not be a CPTP map.

The adjoint Φ† is trace-preserving if and only if Φ is unit preserving since, by
the definition of the adjoint, for all ρ ∈ L(X):

tr Φ†[ρ] = tr IA ◦ Φ†[ρ] = tr Φ[IA] ◦ ρ. (7.67)

Furthermore, we have seen that the bistochastic channels are exactly the inference
symmetric channels. In analogy with the discussion above on the closed systems, for
a bistochastic channel Φ, the quantity

tr |x〉〈x| ◦ Φ[|a〉〈a|], (7.68)

given by the generalised Born rule, yields the numerical value of four a priori
conceptually distinct quantities:

• Ppre(x|a,Φ), for the prediction task with bistochastic channel Φ,
• Ppost(a|x,Φ), for the postdiction task with bistochastic channel Φ,
• Ppre(a|x,Φ†), for the prediction task with bistochastic channel Φ†, and
• Ppost(x|a,Φ†), for the postdiction task with bistochastic channel Φ†.

Thus postdiction-symmetry is intimately linked with time-reversal invariance even
in the context of quantum channels.

In general, however, the adjoint of a CPTP map might fail to be trace non-
increasing. So it might not only fail to represent a quantum channel, but may
not even be a quantum map, i.e. part of an operation. In this case, an active
time-reversal of the corresponding quantum channel does not exist, as has been
recently shown in [55, 58].

3We are using the horizontal reflection of a unitary U to represent its adjoint.



7.6 The arrow of inference 115

7.5.3 Quantum channels towards the past

A quantum channel might not have an active time-reversed version. Nevertheless,
we can learn something striking by looking at the time-reversed task of a purification
of this quantum channel: CPTP maps can describe postdictions in situations in
which part of the future data is left implicit and fixed. Consider the time-reversed
version of the purified task in section 7.4.3. The system is prepared in some state
corresponding to the basis {xiyj} and measured on some basis {aibj} after undergoing
the transformation described by UΦ

†. Using the time-symmetry of unitary open
systems (7.63), observe that

Ppre(x|a,Φ) = Ppre(x|ab, UΦ) = Ppost(x|ab, U †Φ). (7.69)

That is, the quantity
tr |x〉〈x|Φ[|a〉〈a|] (7.70)

is the solution to two different tasks:

• Ppre(x|ab, UΦ) for the prediction task with unitary UΦ, and
• Ppost(x|ab, U †Φ) for the time-reversed postdiction task with U †Φ.

Thus one can take the quantity (7.70) to relate to an inference towards the past, in
a situation in which part of the future events are only implicitly described. This
furthers the argument that the inference-asymmetry of the CPTP maps is not an
asymmetry related to an intrinsic direction of time in the details of a quantum
process, but in an asymmetry in the data about a system. The input of a CPTP
map does not necessarily lie to the past of the output, it can also lie to its future.

This last insight will play a major role in dispelling a source of confusion regarding
the time-orientation of quantum phenomena.

7.6 The arrow of inference
In this section, we discuss two closely related asymmetric aspects of the operational
formalism, encapsulated by two maxims: “there exists a unique deterministic effect”
and “no signalling from the future”. These expressions reflect mathematical properties
of the theory that are often taken as evidence of an asymmetry between the past
and the future. Here we show that these properties reflect the asymmetry due to
the arrow of inference, which is in principle independent of the arrow of time.

7.6.1 “There exists a unique deterministic effect”

As a mathematical statement, given the definitions, this maxim is correct. A
quantum map is deemed deterministic, or causal, if it is trace preserving. An
effect is a quantum map from a Hilbert space to the trivial Hilbert space. Thus a
deterministic effect is an effect that is trace-preserving. It is easy to see that the
only such effect is the one that maps a state to its trace, i.e. the discard operator.
In this precise sense the discard is the only deterministic effect.

As a statement of the irreducible uncertainty of quantum phenomena, the maxim
is also correct: the only way to be certain about a prediction in all cases is not
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to guess at all. In the context of prediction tasks, discarding means not trying to
predict anything about the system and is represented by the identity operator as an
effect (see section 7.3). Not guessing is the only way to always guess right, and this
is the physical content of “there exists a unique deterministic effect.”

The uniqueness of the deterministic effect is sometimes understood as the conser-
vation of probability, a mere aspect of inference (see for example [13, 235]). However,
the maxim is sometimes taken to signify something fundamental about the distinc-
tion between the past and the future [67, 192], and this is not correct. In fact, we
can define by analogy what it means to discard something in the past. If discarding
in the future means marginalising prediction probabilities, then discarding in the
past means marginalising postdiction probabilities. Discarding in the past is also
represented by the identity operator when computing probabilities—this time in the
input side, as we have seen at the end of section 7.3. Indeed, looking at the formula
(7.33) for postdiction with a general quantum channel, we see that the only way to
have probability 1 is to discard the system, i.e. by not guessing at all.

Thus, the uniqueness of the discard operator is not a consequence of the time-
orientation of quantum phenomena. It is instead a manifestation of thoroughly
time-symmetric quantum indeterminism in the context of prediction.

7.6.2 “No signalling from the future”

This maxim means that the probabilities of the outcomes of a quantum operation
do not depend on the nature of a later operation. To lay down some notation, we
reproduce the standard proof of this property, which is an immediate consequence
of the equations (7.22) and (7.26). In the next section, we comment on the physical
reasons for this and show that it too is in fact a property of the arrow of inference,
not a property of time.

Suppose a system starts in a state ρ, and the operation EA→D = {Ex} is applied.
The quantity

Ppre(x|ρ, E) = trEx[ρ] (7.71)

is the probability of observing outcome x.
Suppose instead that the operation E is immediately followed by another operation

FD→Z = {Fy}. The probability for the outcomes x and y is given definition by (7.26):

Ppre(xy|ρ,F ◦ E) = trFy [Ex[ρ]] (7.72)

An immediate application of probability theory and the completeness equation (7.22)
yields

Ppre(x|ρ,F ◦ E) =
∑
y

trFy [Ex[ρ]] = trEx[ρ], (7.73)

and we thus have the identity

Ppre(x|ρ,F ◦ E) = Ppre(x|ρ, E). (7.74)

The probabilities of the outcomes of the first operation are independent on the nature
of the second operation.4 The case in which the operation F is performed and the
case in which it is not are indistinguishable by looking only at what happens at E .
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A future experimenter cannot affect the statistics in the present by manipulating a
system in the future, hence “no signalling from the future.”

What about the opposite direction? By linearity and (7.25) we have

Ppre(y|ρ,F ◦ E) = Ppre(y|E [ρ],F), (7.75)

so that the probability of y clearly depends on the first operation E .
Thus the future operation does not affect the probabilities of past events, while

the past operation affects the probability of future events. One seems compelled to
conclude that this reveals a time-asymmetry in quantum theory. But this conclusion
is too quick. In previous sections, we have encountered various situations in which
asymmetric aspects of quantum theory should not be ascribed to a difference between
past and future, but to the directionality of inference and an asymmetry of the data.
We have also seen that the operational formulations assume that the arrow of time
and the arrow of inference point the same way. We should be cautious.

7.6.3 “No signalling from the further unknown”

The calculation above in fact shows that the future operation does not affect the
prediction probabilities of events in its past, while the past operation affects the
prediction probabilities of events in its future. In other words, if somebody in the
past of both operations is trying to guess what would be the outcome of the first
operation, they can safely discard any information about the second operation that
might be available at that time.5 Put another way: an event further away from the
data does not affect the prediction probabilities closer to the data.

A similar statement holds also when the arrow of inference points toward decreas-
ing time, i.e. when doing postdiction. As we have already seen in section 7.5.2, one
can understand a CPTP map as a shorthand to calculate a postdiction probability
when a future event is implicitly considered fixed. The same is generally true of any
operation: it can serve as a shorthand to aid the calculation of postdiction probabil-
ities. Then (7.74), understood as a statement about postdiction probabilities, tells
us that what happened in the further past does not affect our ability to infer what
happens in the closer past. When predicting, an event does not affect prediction
probabilities about an event in its past. When postdicting, an event does not affect

4Note that the no-signalling from the future property (7.74) can also be seen as a motivation for
the definition (7.26) for the probabilities of the outcomes of sequential operations in the first place.
Indeed by linearity, these can be rewritten as:

trFy [Ex[ρ]] = tr
[
Fy

(
Ex[ρ]

trEx[ρ]

)]
· trEx[ρ] (7.76)

so that, by setting ρx = Ex[ρ]/trEx[ρ] one can write:

Ppre(xy|ρ,F ◦ E) = Ppre(y|ρx,F) · P (x|ρ, E). (7.77)

5To be sure, having knowledge of the outcome of the second operation does provide an advantage
in guessing the outcome of the first one, since

P (x|y, ρ,F ◦ E) = trFy[Ex[ρ]]/trFy[E [ρ]]. (7.78)

This data however is unavailable to somebody sitting in the past of both operations.
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postdiction probabilities of events in its future. In both cases, there is no signalling
from the further unknown.

As an illustration, let us consider a purification of the two operations EA→D
and FD→Z above. Let us assume for simplicity that there is no need to discard a
part of the output system (by handling the more general case we would reach the
same conclusions but with more typographical effort). Then there exists Hilbert
spaces B,C,X and Y , unitaries UE : A⊗B → X ⊗D and UF : D ⊗ C → Y ⊗ Z,
pure states |b〉 ∈ B and |c〉 ∈ C as well as orthonormal bases for X and Y labelled
by x and y respectively, such that for all ρ ∈ L(A) and σ ∈ L(D):

Ex[ρ] = trX |x〉〈x| ◦ UE [ρ⊗ |b〉〈b|], (7.79)
Fy[σ] = trY |y〉〈y| ◦ UF [σ ⊗ |c〉〈c|], (7.80)

meaning that:

b c

UE

UF

yx

=
Ex

Fy
. (7.81)

We can write down the prediction probabilities for the purified task in terms of the
operations:

Ppre(xy|abc, UFUE) = trFy[Ex[a]]. (7.82)
Now we can use the property (7.63) of time-reversed unitary tasks to also write

Ppost(xy|abc, U †EU
†
F ) = trFy[Ex[a]]. (7.83)

Thus, the quantities trFy[Ex[a]] are also postdiction probabilities for a different
scenario, in which future events b and c are held fixed, and this knowledge is used to
guess something happening to their past (x and y):

b c

UE

UF

yx

=
Ex

Fy

a

a

. (7.84)

In this case, the operation F contains information about something that happens
earlier in the system, namely, the interaction U †F between the subsystems Y and
Z, and the outcome of the measurement of C. All of this information is irrelevant
when postdicting only the preparation on X:∑

y

Ppost(xy|abc, U †EU
†
F ) = Ppost(x|abc, U †E). (7.85)

Thus, when postdicting, the outcome and nature of the earlier operation is irrelevant
to the probabilities for the outcome of the later operation.
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7.6.4 Why we can signal from the past

We have seen that the operation E affects the prediction probabilities for the outcome
of F . How is this related to the notion of signalling? Let’s imagine two parties, one
located where E takes place and one where F takes place. Let’s call them Eve and
Fred. How can Eve send a signal to Fred? The barebones scenario for signalling
to the future is that Eve’s operation is simply a state preparation of a qubit, and
Fred’s is a projective measurement. Eve, who knows the basis on which Fred will
measure, chooses one of the two states so that she fully determines the outcome of
Fred’s operation. Like this, she can send one bit of information.

Notice, however, that Eve’s ability to choose is crucial to this protocol. If she
cannot pick what state to send to Fred, she cannot send a message to him. All she
can do is try to predict what will be the outcome of Fred’s measurement, once—and
if—she knows what state she sent him. How does somebody prepare a system in a
specific state? In practice, this is done by subjecting the system to a maximal test
and discarding the systems yielding unwanted results [202]. Alternatively, one can
apply a unitary transformation to the system, conditional on the outcome of the
maximal test. Both of these procedures require an increase in the entropy of the
universe, as the first involves picking and choosing [173, 227] and the second is an
instance of erasure so Landauer’s principle applies [152], a rigorous proof of which
just appeared [180]. Thus, signalling is a concept beyond single quantum transition
probabilities and has its origins in the thermodynamic arrow of time.

We are time oriented creatures, we know more about the past than about the
future, we mostly try to guess the future. Quantum probabilities do not care if
you are making guesses about the future or the past. They are about predicting
what is unknown from what is known. The difference between what is known and
what is unknown is at the origin of the time asymmetric maxims of the operational
formulations. The first maxim arises from the fact that postdiction scenarios are
rarer than prediction ones in practice. If we want to learn about the past, we find
there are plenty of records about past events in the present. The existence of traces
is not a property of the probabilities of individual quantum systems, so the fact that
we rarely have to guess about the past the same way we have to guess about the
future is no evidence of a time asymmetry of the physics of quanta.

The grip of the second maxim on the community is more subtle. It rests on
the notion of signalling, which is itself tightly linked with ideas of causation and
agency, concepts we have strong intuitions for and rely on daily. We humans make
choices and these choices influence our future (not our past). The same goes for
a lot of systems around us: when my laptop suddenly “decides” to break, it will
affect my ability to finish a future paper (not a past one). Is this time-orientation
a direct consequence of some time asymmetry in quantum phenomena? Hopefully,
by now, the answer is clear. Is causation a fundamental property of the world in
some other way? This question has received surprisingly little attention from the
physics community at large [211]. This question needs to be addressed carefully
if one hopes of extending these operational formalisms to probe physics outside
laboratories. The notion of causes always preceding effects is strongly related to
notions of agency. And agency is a perspectival property, stemming from a partial
description of systems and the presence of an entropy gradient [173, 227]. One
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should be cautious in extending notions of time oriented causation all the way to
elementary physics.

7.7 Time orientation of other formalisms
Before concluding the paper, we add some comments regarding the time orientation
in other formalisms.

In the de Broglie-Bohm interpretation [30, 118], the particle and the pilot-wave
obey time-reversal invariant dynamics. The Everettian wavefunction [232, 254] also
obeys time-reversal invariant dynamics. Branching towards the future is interpreted
as a past low entropy condition: systems were uncorrelated in the past, hence the
vanishing of von-Neumann relative entropy. Alternatively, it can be interpreted as a
perspectival aspect of the Everettian relative state determined by an observation in
the present.

The Copenhagen quantum state is correlated with past observations, not future
ones, but the state is, of course, unobservable and its ontological status is debated.
Its empirical content is given by the probabilities it allows to calculate. If we ask
time-symmetric questions, the probabilities we obtain are time-symmetric [4]. The
state is assumed to be correlated with past events because we are using past data to
infer about the future. If we want to guess about the past, we could just as well use
a quantum state correlated with a future event [225, 247, 259].

In QBism [108], quantum theory is interpreted as a means to aid decision
making, allowing an agent to calculate the probabilities of the consequences of their
interactions with the world. Because decision-making agents play a central role in
bringing about the world according to the QBists [106], the ontology of the theory
is fundamentally time oriented.

Laboratory measurements generally involve decoherence and amplification of
a microscopic phenomenon to the macroscopic realm, both of which rely on the
entropy gradient. Views of quantum theory that insist that the only real events are
of this kind are therefore time-oriented, even though the probabilities themselves
might be time-symmetric. These views also imply that there is no interpretation of
the theory outside of the macroscopic approximation.

According to the relational interpretation of quantum mechanics (RQM) [221,
226], facts happen at every interaction between any two systems, but the facts are
relative to the systems involved in the interaction. The quantum state only plays
a computational role in this interpretation. In the next chapter, we will see how
decoherence comes into play to stabilise a fact , so that one might ignore its relational
nature, which is manifest in interference effects. Decoherence requires information
loss and an increase in entropy. Hence RQM is a time-symmetric formulation of
quantum theory, but the dynamics of relative facts is time symmetric while the
dynamics of stable facts is time oriented.

Conclusion
Quantum theory is not about predicting the future, it is about time-symmetric
conditional probabilities relating events. The directionality internal to the theory is



7.7 Time orientation of other formalisms 121

the arrow of inference, the difference between known and unknown.
There are formulations of quantum theory that break time reversal symmetry and

use time oriented theoretical notions. These either refer to non-observable entities, or
to assumptions about the time orientation of inference problems, or to the entropic
time orientation of decoherence. Examples of such formulations are provided by the
use of a quantum state determined by past interactions in the Copenhagen-type
interpretations, and the use of the quantum operations described above. The time
orientation of operations is due to them being high-level notions with a built-in
assumption about time asymmetric capabilities of the experimentalists.

The time orientation of the formalisms we use is determined by the common
boundary conditions we set for the physical processes we study: they come from
the assumptions about the agent interacting with the system and the conditions
she imposes on it. The agent is not directly modelled in the theory and is instead
represented by the inferential boundary conditions and choice of operations, the
exogenous variables of [178]. Time orientation is in this way external to the elemen-
tary quantum process being modelled. It can, in principle, be entirely accounted for
at the level of statistical mechanics as a consequence of the existence of an entropy
gradient, namely past low entropy [173, 177, 227, 228].

Some authors [4, 192] have built time-symmetric theories to replace quantum
theory. However, the results of sections 7.2 and 7.5 show that quantum theory is
already time-symmetric as it is. The transition probabilities calculated with quantum
theory are blind to the direction of time. The probabilities of closed quantum systems
are inference symmetric and time-reversal invariant. Thus, when accounting for all
the relevant degrees of freedom, the predictions of quantum theory are thoroughly
time-agnostic. The probabilities of open quantum systems are in general neither
inference symmetric nor time-reversal invariant. We have shown that the asymmetry
between prediction and postdiction in this case is only a consequence of treating
the two problems asymmetrically, by assuming more knowledge in one case than in
the other. Both inference asymmetry and the failure of time-reversal invariance of
quantum channels can be understood in the same terms. This asymmetry6 is not
intrinsic to the mechanical theory, but is, rather, an asymmetry of the questions we
humans ask using the theory.

6This situation is reminiscent of the one in classical statistical mechanics, in which one can prove
that entropy increases both towards the past and towards the future of the given initial state [178,
211]. In both situations we use time-symmetrical mechanical laws to extrapolate from a state of
limited knowledge to a state at other times. This results in even more limited knowledge. The fact
that entropy was lower in the past, is a fact external to the laws of mechanics. And the fact that
we are mostly interested in extrapolating towards the future is in turn a consequence of the low
entropy in the past.
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Part IV

Facts and Objectivity in QM
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Chapter 8

Stable facts, relative Facts

8.1 Facts in quantum theory
The common textbook presentation of quantum theory assumes the existence of a
classical world. A measurement involves an interaction between the classical world
and a quantum system and produces a definite result, for instance a dot on a screen.
The result is a fact by itself, but also establishes a fact about a quantum system.
For instance, a certain measurement resulting in a definite record establishes that at
some time the z-component of the spin of an electron is Lz = ~/2, which is then a
fact about the electron.

Quantum probabilities are probabilities for facts, given other facts. Facts are
therefore the arguments of which the probability amplitudes are function. In
particular, facts are used as conditionals for computing probabilities of other facts.
For instance, if the spin of the electron mentioned above is immediately measured in
a direction at an angle θ from the z-axis, the probability to find the value Lθ = ~/2
(a fact), given the fact that Lz = ~/2, is

P

(
Lθ = ~

2

∣∣∣∣ Lz = ~
2

)
= cos2

(
θ

2

)
. (8.1)

In this sense, quantum mechanics is about conditional probabilities relating facts
about systems.

Facts ascertained in a conventional measurement are stable in the following sense.
If we know that one of N mutually exclusive facts ai (i = 1 . . . N) has happened,
the probability P (b) for another fact b to happen is given by

P (b) =
N∑
i=1

P (b|ai)P (ai), (8.2)

where P (ai) is the probability that ai has happened and P (b|ai) is the probability
for b given ai. We take equation (8.2) as a characterisation of stable facts.

As we saw in section 3.3 textbook presentation of quantum mechanics is incom-
plete because it assumes the existence of a classical world. An exactly classical
world can exist only if current quantum theory has limited validity—for instance
if physical collapse mechanisms exist [115, 200], or for some other, still unknown
reason. Quantum theory has however been universally successful so far, and there is
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no empirical evidence of its failure. This strongly suggest that real physical objects
are classical (meaning they do not display quantum properties) only approximatively.
There are no exactly classical objects, strictly speaking, as everything we interact
with is made of atoms and photons, which obey quantum theory.

It is unconvincing to use concepts valid only within an approximation when
formulating the fundamental theory of nature. Therefore the attempts at interpreting
quantum theory as a universal theory do not rely on postulating classical objects.
This is the case for instance for the Everettian quantum mechanics [232, 254, 258]
and the pilot wave theory [97, 118] and Relational Quantum Mechanics (RQM) [155,
221, 226]. The emergence of classical world (or worlds) has already been studied in
both Everettian quantum mechanics and pilot wave theory. In this chapter, based
on [85], we investigate how the classical world arises in RQM, namely, how some
relative facts become stable thanks to certain physical interactions.

8.1.1 Relative facts

Relative facts are defined to happen whenever a physical system interacts with
another physical system. While relative facts play a central role in RQM, their
definition and their usefulness are independent of the interpretation. We shall discuss
this role in detail in the next section.

Let us consider two systems S and F . If an interaction affects a variable LF of F
in a manner that depends on the value of a certain variable LS of S, then the value
of LS is a fact relative to F . That is, whenever a system F is affected by a variable
of another system, the value of that variable becomes a fact for F . This is true by
definition irrespectively of whether F is a classical system. The interaction with F
is the context in which that variable1 takes a specific value; we call the system F , in
this role, a “context”. The interaction with the context determines the fact that a
certain variable has a value in that context.

Stable facts are a strict subset of the relative facts: there are many relative facts
that are not stable facts. Quantum theory provides probabilities relating relative
facts, but these satisfy (8.2) only if b and the ai are facts relative to the same system.
That is, if we label facts with their context (writing a(F) for a fact relative to system
F), then it is always the case that

P (b(F)) =
∑
i

P (b|ai)P (a(F)
i ). (8.3)

In contrast, whenever W 6= F , it is in general not the case that

P (b(W)) =
∑
i

P (b|ai)P (a(F)
i ). (8.4)

If (8.4) holds, we say that the value of the variable LS is stable for W.
The failure of (8.4) is easily understood in terms of the standard language of

quantum theory: it is the presence of interference effects. If F is sufficiently isolated
1We use ‘variable’ to denote any quantity that in the classical theory is a function on phase pace.

We prefer to avoid the expression ‘observable’ because it is loaded with irrelevant extra baggage:
the ideas of observation and a complex observer. The term ‘context’ is used here in a sense similar
to that in [119]. However we do not require the context to be classical. See [10].
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it may be possible to maintain quantum coherence for the compound system S−F .
The interaction entangles the two systems and interference effects between different
values of the variable LS can later be detected in the measurements by an observer
W. The probabilities for facts of the S−F system relative to W can indeed be
computed from an entangled state of the form

c1 |a1〉 ⊗ |Fa1〉+ c2 |a2〉 ⊗ |Fa2〉, (8.5)

where ai are values of LS and Fai are values of F ’s “pointer variable” LF . Prob-
abilities computed from this state violate (8.4) as they feature interference terms
because what sums is amplitudes, not probabilities. The value of LS , therefore, is
not a stable fact.

Hence, facts relative to a system F cannot in general be taken as conditionals
for computing probabilities of facts relative to a different system W . Equation (8.2)
holds only if b and ai are facts relative to the same system, but fails in general if
used for facts relative to different systems.

While the notation S for ‘system’, F for ‘Friend’ and W for ‘Wigner’ is meant
to evoke the famous Wigner’s friend thought experiment [262] discussed in 3.2, in
the discussion above there are no assumptions about the system F being quantum
or classical, microscopic or macroscopic.

So, what exactly characterises a stable fact, among the relative facts? What
gives rise to stable facts?

8.1.2 Decoherence

Since stability is a characteristic feature of the classical world, whose facts invariably
satisfy (8.2), answering the questions above amounts to explaining in terms of relative
facts what it takes for a system to be classical.

Various characterisations of a classical or semiclassical situation can be found
in the literature: large quantum numbers, semiclassical wavepackets or coherent
states, macroscopic systems, large or infinite number of degrees of freedom... All
these features play a role in characterising classical systems in specific situations.
But the key phenomenon that makes facts stable is decoherence [270, 273, 274]: the
suppression of interference that happens when some information becomes inaccessible.
Let us see in an example how this plays out.

Consider two systems F and E (E for “Environment”), and a variable LF of
the system F . Let Fai be the eigenvalues of LF . A generic state of the compound
system F−E can be written in the form

|ψ〉 =
∑
i

ci |Fai〉 ⊗ |ψi〉 , (8.6)

where |ψi〉 are normalised states of E . Let us define

ε = max
i 6=j
| 〈ψi|ψj〉 |2. (8.7)

Now, suppose that: (a) ε is vanishing or very small and (b) a system W does
not interact with E . Then the probability P (b) of any possible fact relative to W
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resulting from an interaction between F and W can be computed from the density
matrix obtained tracing over E , that is,

ρ = trE |ψ〉〈ψ| =
∑
i

|ci|2 |Fai〉〈Fai|+O(ε). (8.8)

By setting P (Fa(E)
i ) = |ci|2, we can then write

P (b(W)) =
∑
i

P (b|Fai)P (Fa(E)
i ) +O(ε). (8.9)

Thus, probabilities for facts b relative to W calculated in terms of the possible values
of LF satisfy (8.4), up to a small deviation of order ε. Hence the value of the variable
LF is a fact relative to E that is stable for W to the extent to which one ignores
effects of order ε. In the limit ε → 0, the variable LF of the system F is exactly
stable for W.

Extensive theoretical work has shown that decoherence is practically unavoidable
and extremely effective as soon as large numbers of degrees of freedom are involved
[275]. The variables of F that decohere, namely the specific variables for which ε
becomes small, are determined by the actual physical interactions between F and
E (they are those variables that commute with the interaction Hamiltonian). The
decoherence time, namely the time needed for ε to become so small that interference
effects become undetectable by given observational methods, can be computed and
is typically extremely short for macroscopic variables of macroscopic objects. All
this is well understood. It is important for what follows to emphasise two subtle
aspects of decoherence.

First, decoherence is not an absolute phenomenon, but a relational one: it
depends on how the third system W interacts with the combined system F−E . This
is because assumption (b) above is just as crucial as assumption (a) in deriving (8.9).
Another system W ′ that interacts differently with F−E might be able to detect
interference effects.

Second, decoherence implies that an event regarding two systems F and E is
stable for a third system W. Hence, a fact stable for W is not necessarily a fact
relative to W. That is, the variable LF is stable for W even if the latter has not
interacted with it, so there is no fact relative to W yet. This is what allows one to
say that, with respect to W , the “state of the system F has collapsed into the state
|Fai〉 with probability P (Fai) = |ci|2,” even though W has not interacted with F .

These observations show that decoherence does not imply that there is a perfectly
classical world of absolute facts, although it does explain why (and when) we can
reason in terms of stable, hence approximatively classical, facts.2

2There is a limit case in which a fact can be stable even in the absence of decoherence. This
is when one of the amplitudes in (8.6), say c1, is very close to 1. If W does not interact with
E , then the probabilities for facts relative to W can be computed using ρ′ = |Fa1〉〈Fa1| + O(η),
where η = 1− |c1|2. In this case, one can reason as if the value of LF were a fact relative to W,
up to order η effects. Thus, when a fact relative to a system has very high probability, then it is
stable for other systems, because the interference effects are small. Notice the differences with the
Einstein-Podolsky-Rosen [93] criterion for an ‘element of reality:’ the above only holds to the extent
to which W cannot interact with E , and there needs to be a fact relative to E in the first place.
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8.1.3 Measurements

If two systems S and F interact so that their respective variables LS and LF get
entangled, and if LF is stable for W , it follows immediately from the definitions that
also LS is stable for W.

This is precisely what happens in a typical quantum measurement of a variable
LS in a laboratory. Thinking of S, F and W as, respectively, the system being
measured, the apparatus and the experimenter, we can separate the measurement in
three stages:

1. An interaction between the system and the apparatus entangles LS with a
pointer variable LF of the apparatus.

2. LF gets correlated with a large number of microscopic variables (forming E)
that are inaccessible to the observer W.

3. The observer W interacts with the pointer variable LF to learn about LS .

Let’s trace this same story in terms of relative facts:

1. A relative fact is established between S and F .

2. A relative fact is established between F and E . Since W does not interact
with E , this stabilises the previous fact for W.

3. A relative fact is established between F and W. This has consequences on
W’s future interactions with S−F .

Already at stage 2, the observer can apply (8.4) since the interaction with the
inaccessible degrees of freedom greatly suppresses interference terms. The observer
might say “LS has been measured,” and assume that the pointer of the apparatus
moved one way or the other. In the mathematical formalism, W can assume that
“S’s wavefunction has collapsed.” Note however that neither the value of LS or LF is
a fact for W at this stage. Stability simply allows W to “de-label” facts relative to
F . It is is only at stage 3 that the value of LF becomes a fact for W . Note that the
value of LS is still not a fact relative to W, but it is a stable fact for W. However,
based on the value of LF , the experimenter W can update the state for S. The
experimenter can reason as if LS took the value that she read on the apparatus’
pointer variable.

It is the way that the four systems S, F , W, and E couple to each other that
makes F a measuring apparatus for W. The stability of F for W extends to all
other variables that interact with F , hence W, on might say that “F causes S to
collapse.” But, in fact, this “collapse” is not objective, it is relational and effective.
Another system W ′ that couples differently to these systems might still be able to
detect interference effects.

In summary, we can distinguish two notions of facts that play a role in quantum
theory: relative facts and stable facts. Quantum theory allows us to talk about
relative facts and compute probabilities for them. Equation (8.3) holds but (8.4)
does not. The violation of (8.4) is quantum interference.
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Stable facts are a subset of the relative facts. They satisfy (8.4). A relative
fact about a system F is stable for a system W if W has no access to a system E
which is sufficiently entangled with F . Stability is only approximate and relational.
Approximate, because no fact is exactly stable for any finite ε. Relational, because
it depends on how the putative ‘observer’ system couples to the system and the
environment.

8.2 Facts and reality
We have given definitions of relative and stable facts, and studied their properties.
In this section we discuss the roles of relative and stable facts for the interpretation
of quantum theory, namely for the relation between the formalism and the reality it
describes.

8.2.1 The link between the theory the world

Let us compare advantages and difficulties of interpreting either stable or relative
facts as the link between theory and reality.

Stable facts are taken as the link between the formalism and the world in
textbook interpretations of quantum theory. They are the conventional “measurement
outcomes” in a macroscopic laboratory. They are similar to the facts of classical
mechanics because, in the world described by classical mechanics, all facts (variables
having certain values at certain times) are exactly stable: the (epistemic) probabilities
for them to happen are always exactly consistent with (8.2). In quantum mechanics,
facts stable for us humans are ubiquitous because of the ubiquity of decoherence
and the frequency of interactions.

There are however two difficulties in taking stable facts as the basis of the
quantum ontology. First, stability is relational. Facts are stable only for a system
that does not have sufficiently precise interactions with an environment system. The
system and environment are still in a superposition with respect to a third system.
Therefore one does not avoid relationalism by restricting to stable facts. Second,
more seriously, stability is only approximate in general. At no point the interference
terms perfectly vanish. These are serious difficulties if we want to take stable facts
as the only primary elements of reality. How stable does a fact need to be before
it is real? And with respect to what systems does it have to be stable, in order
to be real? Any answer to these questions is bound to be as unsatisfactory as the
textbook interpretation that requires a classical world. The alternative is to embrace
the contextuality of the theory in full, and base its ontology on all relative facts.

Relative facts form the basis of a realist interpretation in Relational Quantum
Mechanics (RQM). The fundamental contextuality that characterises quantum theory
is interpreted in RQM as the discovery that facts about a system are always defined
relative to another system, with which the first system interacts. In the early history
of quantum theory it was recognised that every measurement involves an interaction,
and it was said that variables take values only upon measurement. RQM notices
that every interaction is in a sense a measurement, in that it results in the value of
a variable to become a fact. These facts are not absolute, they belong to a context.
And there is no ‘special context’: any system can be a context for any other system.
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The quantum state (“the wavefunction”) does not have an ontic interpretation
in RQM. The state is not a “thing”, nor a condition of a system. Rather, it is what
a physicist uses to calculate probabilities for relative facts between physical systems
to happen, given the relevant information she has. It follows that RQM has no use
for a “wavefunction of the universe” that forever evolves unitarily, as this would be
a tool to calculate probabilities of facts relative to something that does not exist: a
system that is not part of the universe.

Unlike other epistemic interpretations of quantum theory in which the wavefunc-
tion plays only an epistemic role, the ontology of RQM is realist in the sense that it
is not about agents, beliefs, observers, or experiences: it is about real facts of the
world and relative probabilities of their occurrence. The ontology is relational, in the
sense that it is based on facts established at interactions and are labelled by physical
contexts. Relative facts, therefore, provide a relational but realist interpretation to
quantum theory which does not need to refer to complex agents.

8.2.2 No-go theorems for absolute facts

A number of results have recently appeared in the literature as no-go theorems
for absolute (non-relative) facts [32, 36, 103]. These results analyse the extended
Wigner’s friend scenario (EWFS), in which instead of a superobserver reasoning
about his friend in a hermetically sealed laboratory, there are two superobservers
each reasoning about their own friend, with the friends entangled.

Quantum theory cannot consistently describe the use of itself

In [103], Frauchiger and Renner use a EWFS to show that quantum theory is
inconsistent under a certain number of assumptions. A key assumption used to
derive the contradiction is the absolute nature of facts. This is assumption (C) in the
paper, which can be stated as follows: “If W, applying quantum theory, concludes
that F knows that LS = a, then W can conclude that LS = a.” The ‘C’ stands
for consistency: the authors argue that this assumption is required to deem the
theory consistent: different agents using the same theory must arrive at the same
conclusions. From the point of view of this chapter, this is an ironic choice of name,
as it is precisely this assumption that leads to contradiction according to RQM.

In terms of relative facts, assumption (C) implies: “If W, applying quantum
theory, can be certain that LS = a relative to F , then W can reason as if LS = a
also relative to W.” Now, as we have shown, this holds only if every fact relative to
F is stable for W, which is not guaranteed and depends on the physics. Therefore
Assumption (C) only holds if S or F decohere with respect to W . In the Frauchiger
and Renner protocol, the superobservers are supposed to have full quantum control
on their friends and the contents of their labs. Thus, by definition, what is stable for
the friends is not stable forW . Hence, the contradiction follows from inappropriately
mixing contexts: forgetting that facts are relative and therefore (8.4) does not hold
in general.

Indeed, as pointed out in [272] and worked out in detail in [214, 215], no
contradiction can be derived if one additionally assumes that what is decoherent for
the friends (the laboratory they are in) is also decoherent for W . As a side note, the
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analysis of how an agent should reason about an experiment that will be performed
on him has not been done within RQM yet. The reader is invited to consider the
analysis within QBism [50, 77], since also QBism holds that assumption (C) fails
and quantum states are only used to calculate probabilities from the point of view
of a given system.

A strong no-go theorem on the Wigner’s friend paradox

Another enlightening result is the recent Bong et. al. [32], which is a strengthening of
a previous result by Brukner [36, 212]. In [32], the authors show that the conjunction
of (a) absoluteness of observed events, (b) no superdeterminism and (c) locality
imply that correlations in the extended Wigner’s friend scenario must satisfy some
inequalities, called the Local Friendliness (LF) inequalities. Like Bell’s inequalities3

[16, 19], these are derived in a theory-independent way. The authors then show
that quantum theory predicts the violation of these inequalities. Thus the universal
validity of quantum theory implies that one of the three properties above does not
hold.

The word ‘locality’ means different things in different physics communities. The
notion used to derive the LF inequalities is the one that Bell used to derive his
inequalities in [16]. In operational language, (c) says that a free choice does not alter
the probabilities of a spacelike separated event. Most epistemic interpretations accept
this notion of locality [47, 52], while it is rejected by the pilot-wave interpretation
[118]. No superdeterminism simply means that free choices are possible so that, in
particular, the measurement settings can be chosen so as to be uncorrelated with
other relevant variables. See [264] for an in depth analysis on the notions of locality
and superdeterminism in the context of the implications of Bell’s theorems.

If one believes that quantum theory holds at arbitrary scales, wishes to maintain
locality and reject superdeterminism, one has no choice but to reject the absoluteness
of observed events. Absoluteness of observed events means that if W deems that
F is an observer, then W can use (8.4)—even if W has full quantum control on F .
This clearly does not hold in RQM: if W has full quantum control on F then facts
relative to F are not stable for W and thus (8.4) does not hold. Note that in RQM
there are no special ‘observer’ systems so an ‘observed event’ is simply a fact relative
to a given system.

Remarkably, the LF inequalities have already been experimentally violated when
the friends are single photons [32]. One might be tempted to dismiss the results on
the ground that photons do not generate facts (“photons are not observers”), but this
opens the problem of deciding which systems give rise to facts. If quantum theory is
universally valid, advances in quantum technologies will allow to perform the same
experiment with increasingly complex “friends”. The predictions of quantum theory
remain the same: the statistics are incompatible with the assumptions of absolute
facts.

The violation of the LF inequalities is no way in tension with the relational
interpretation. The opposite is true: the result is taken as evidence that the facts
quantum theory deals with are facts relative to systems.

3For a discussion of the implications of the ontology of RQM to Bell’s inequalities, see [154, 244]
and [169, 204].
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8.2.3 Conclusions and final comments

The insight of Relational Quantum Mechanics (RQM) is that recognising the relative
nature of facts offers a straightforward solution to the measurement problem. The
measurement problem is the apparent incompatibility between two postulates: the
“projection” and the “linear evolution” postulate. Both postulates can be correct:
they refer to facts relative to different systems. Say that S interacts with F , so that
a fact relative to F is established. Then the projection postulate is used to update
the state of S with respect to F , while the unitary evolution postulate is used to
update the state of S−F with respect to a third system W.

In a slogan: “Wigner’s facts are not necessarily his Friend’s facts”.
This by no means implies that when Wigner and his friend compare notes they find
contradictions [221]. Interactions between S and F do have influence on the facts
relative to W. Indeed, after an interaction, S and F are entangled relative to W,
meaning that in interacting with the two systems, W will find the two correlated.
Therefore Wigner will always agree with his Friend about the value of LS once he
too interacts with them. In this sense, relative facts correspond to real events, they
have universal empirical consequences.

Still, accepting the relativity of all facts is a strong conceptual step. It amounts
giving up the absolute nature of facts, namely, the existence of an absolute “macro-
reality” in the language used in discussions of Bell’s inequalities [264]. Such a
macroreality only emerges approximately, relative to systems for which decoherence
is sufficiently strong.

Decoherence has always played a peculiar role in the discussions on the measure-
ment problem. On the one hand, it is simply a true physical phenomenon, obviously
relevant for shedding light on quantum measurement. On the other hand, there is
consensus that decoherence alone is not a solution of the measurement problem,
because it does not suffice to provide a link between theory and reality. Decoherence
needs an ontology. Relative facts provide such a general ontology, which is well
defined with or without decoherence. Decoherence clarifies why a large class of
relative facts are stable for us and thus form the stable classical world we live in.

The violation of (8.2) when used for facts relative to different systems sheds also
some light on the underpinnings of quantum logic. The violation of (8.2), indeed,
has been interpreted as a violation of classical logic [28], as it can be written as

P
(
b and (a1 or a2)

)
6= P

(
(b and a1) or (b and a2)

)
, (8.10)

in contradiction with the classical logic theorem

b and (a1 or a2) = (b and a1) or (b and a2). (8.11)

The apparent violation of logic is understood in RQM as a result of forgetting that
facts are relative: labelled by a context, as Bohr has repeatedly pointed out. Facts
relative to a context cannot be used, in general, to compute probabilities of facts
related to other contexts because what is a fact in a certain context is not necessarily
a fact in other contexts.

As a final remark, observe that if the quantum state has no ontic interpretation,
the only meaning of “being in a quantum superposition” is that interference effects
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are to be expected. Saying “Friend is in a quantum superposition” does not mean
anything more than saying that Wigner would be mistaken in using (8.4). It has no
implications on how Friend would “feel” while being in a superposition. Friend sees
a definite result of her measurement, a fact, and this does not prevent Wigner from
having the chance to see an interference effect in his facts. Wigner’s friend does not
stop being an observer simply because Wigner has a chance to detect interference
effects in his facts. Schrödinger’s cat has no reason to feel “superposed”.
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Chapter 9

Consequences of the relativity
of facts

In this chapter, based on [84], we wish to discuss the points raised by two recent
papers, one by Jacques Pienaar [205] and one by Časlav Brukner [38]. These authors
present insightful observations and objections on the Relational interpretation of
Quantum Mechanics (RQM). We point out that the observations in them are not
challenges against RQM: they are arguments that clarify and sharpen some aspects
of this interpretation.

Pienaar separates his objections to the relational interpretation into two parts,
the first regards the analogy between RQM and special relativity, the second regards
the status of objectivity in RQM. In the first part, Pienaar points out that the
analogy with special relativity is only partial: the sense in which variables are
“relative” in special relativity is more restricted than the sense in which variables
are “relative” in RQM. In the second part, he argues that RQM cannot be reduced
to the relativity of variables, because facts themselves are relative, and there is no
absolute way of comparing the perspectives of two systems.

Both observations are correct, but they are not objections to RQM. They are
considerations that emphasise the radicality of the RQM perspective. The relational
interpretation does not pretend to make quantum theory less revolutionary than
what it is. It only claims that there exists a coherent and complete way of thinking
about quantum phenomena that makes sense without requiring many worlds, hidden
variables, cognitive agents, or a macroscopic classical world. Hence the two objections
by Pienaar are only objections to the hope to spoil RQM of its core (radical) idea.

Pienaar makes his objections concrete in the form of five no-go theorems that are
supposed to pitch the claims of RQM against one another. To do so, he summarises
RQM in terms of six “key claims” RQM:1–6. This is a detailed and mostly accurate
account of RQM. But it contains one misstep: a misrepresentation of the claims
RQM:5 and RQM:6 (see below). This misrepresentation is common to both [38]
and [205], and regards the meaning of the quantum state. In RQM, the quantum
state is not a representation of reality: it is always a relative state and is only a
mathematical tool used to compute probabilities of events relative to a given system.
The quantum state of a composite system relative to an external system is not an
account or record of relative events between the subsystems of the composite system.
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Assuming that the quantum state is more than this is a misunderstanding leading
to the apparent contradictions. This same mischaracterisation of RQM undermines
Brukner’s critique in [38]. Brukner’s theorem then does not appear as a critique of
RQM. It becomes instead a restriction on the concept of knowledge—concept that
plays no fundamental role in the formulation of RQM.

Because of the mischaracterisation of RQM:5 and RQM:6, and the consequent
over-emphasis on the quantum state, the theorems, as we shall see, either fall apart
or become evidence of the consistency of the interpretation. Pienaar’s and Brukner’s
acute arguments actually turn out to illuminate and emphasise the consistency of
the interpretation, rather than challenging it.

In section 9.1, we comment on Pienaar’s formulation RQM’s claims, pointing
out where it is imprecise. We also briefly anticipate how each of the five no-go
theorems is resolved in a proper understanding of RQM. In section 9.2, we comment
on the relativistic analogy and, in section 9.3, we address Pienaar’s comments
about objectivity in RQM. In this context, we present also a general philosophical
consideration regarding the physical meaning of a subject’s knowledge. In section
9.4, we respond to Brukner’s paper.

As in the previous chapter, we will often consider three interacting systems
W, F and S, and describe the events relative to either F or W. The notation is
meant to suggest the setup of Wigner’s friend thought experiment [262], although
no assumption about these systems being conscious observers or decision-making
agents is necessary.

9.1 RQM’s key claims
Pienaar summarises the RQM literature in terms of six claims, reported in full for
reference:

RQM:1. Any system can be an observer. Any physical system can play the
role of an observer in a physical interaction.

RQM:2 No hidden variables. Any variable that exists in the observer’s causal
past and which is relevant to predictions about future quantum events relative
to the observer must be a quantum event contained in their perspective.

RQM:3 Relations are intrinsic. The relation between any two systems A and
B is independent of anything that happens outside these systems’ perspectives.
In particular, the state of B relative to A depends only upon A’s observation
of B and A’s past history of interactions (similarly for the state of A relative
to B).

RQM:4 Comparisons are relative to one observer. It is meaningless to
compare the accounts of any two observers except by invoking a third observer
relative to which the comparison is made.

RQM:5 Any physical correlation is a measurement. Suppose an observer
measures a pair of systems and thereby assigns them a joint state which
exhibits perfect correlations between some physical variables. Then the two
systems have measured each other (entered into a measurement interaction)
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relative to the observer, and the physical variables play the roles of the ‘pointer
variable’ and ‘measured variable’ of the systems.

RQM:6 Shared facts. In the Wigner’s friend scenario, if W measures F to ‘check
the reading’ of a pointer variable (i.e. by measuring F in the appropriate
‘pointer basis’), the value he finds is necessarily equal to the value that F
recorded in her account of her earlier measurement of S.

This is a good summary of RQM, but some points are slightly misleading, and
one is strongly misleading. Let us comment on each claim.

RQM:1 Any system can be an observer is essentially correct but poorly
phrased, because of the term “observer”. As we have seen in the previous chapter,
RQM distinguishes relative facts from stable facts. Relative facts (or “events”) form
the basis of the ontology; they are ubiquitous and do not require any special property
of the physical systems involved in order to happen. Stable facts are facts stabilised
by decoherence, in the sense that their relativity can be ignored by a large class of
systems. It is better to reserve the use of operational expressions such as “observer”
and “measurement” to those specific situations where there is enough decoherence
to underpin stability, for instance, when there is a scientist making observations, or
a macroscopic system storing memory.1

Terminology aside, the actual content of RQM:1 is correct, namely, we assume
something can happen relative to any system—not only measuring apparata or
“observers” that are special in any sense. So we would rephrase this claim as:

RQM:1? Events (facts) can happen relative to any physical system. Events
happen in interactions between any two systems and can be described as the
actualisation of the value of a variable of one system relative to the other.

RQM:2 No hidden variables is a statement about the universality of QM. It
is correct, but RQM is consistent with the time-reversal invariance of fundamental
physics (see chapter 7), and thus the formulation given by Pienaar must be gener-
alised: it remains valid when swapping ‘past’ and ‘future’. RQM:3 Relations are
intrinsic also does not require any modification.

RQM:4 Comparisons are relative to one observer is another key tenet of
RQM. The idea is that contradictions arise when trying to equate descriptions of
physics in two different contexts, namely relative to different systems. This is for
instance what happens in the Frauchiger and Renner experiment [103], as we have
argued in chapter 8. We rephrase this claim in a cleaner language as:

RQM:4? Comparisons are only relative to a system. It is meaningless to
compare events relative to different systems, unless this is done relative to a
(possibly third) system.

The point is that comparisons can only be made via a (quantum-mechanical) interac-
tion. In the Wigner’s friend setup, W might compare the result of his measurement
on S with that of F only by physically interacting with F in an appropriate manner.

1To be sure, the RQM literature does use the operational terminology ambiguously and it is
indeed common to call “observer” any system with respect to which a variable takes values. We
shall also indulge in this abuse of language below.
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There is no meaning in comparing facts relative to W with facts relative to F , (or
relative to Schŕ’odinger and his cat) apart from this direct physical interaction.

We now come to the troublesome points. RQM:5 Any physical correlation
is a measurement is the main problem with Pienaar’s account. In RQM, facts
determine states, not the other way around. Knowing the state of a system S is not
sufficient to deduce the set of facts relative to the subsystems of S. Attempting to
do so leads to contradictions, as Pienaar’s theorems 3 and 5 show.

The problem here is what determines what. Pienaar and Brukner take the state
as primitive and assume that out of the state one can deduce which events happen in
a composite system. This is not RQM. In RQM, it is the other way around. Events
are primitive. Their happening is partially reflected in the state of the composite
system relative to a third system. But only partially. Events cannot be read out
of the state. The existence of a correlation between two variables gives indications
about events, but in general it is not sufficient to tell which event was or was not
realised. To know what event lead to the creation of a correlation, one needs to know
more, for example the dynamics that coupled the two systems and, in particular,
what variables are involved in the interaction.

Besides this key misrepresentation, there is also a terminological problem in
RQM:5, parallel to the one pointed out for RQM:1. Pienaar calls a “measurement”
what the RQM literature calls an event that establishes a fact. It is much better to
reserve the loaded expression “measurement” to interactions that stabilise certain
facts and require decoherence.

A proper reformulation of RQM:5, is:

RQM:5? An interaction between two systems results in a correlation
within the interactions between these two systems and a third one.
With respect to a third system W, the interaction between the two systems
S and F is described by a unitary evolution that potentially entangles the
quantum states of S and F .

As we shall see, while RQM:5 is in tension with RQM:3, RQM:5? is not. Note
also howRQM:5? goes hand in hand with RQM:1?. These two assumptions
together provide the resolution of the measurement problem in RQM. Von Neumann
measurements are compatible with unitary evolution because they describe facts
relative to two interacting systems (S and F) while the unitary evolution regards
facts relative to a third system (W).

Finally, RQM:6 Shared facts as stated by Pienaar is either wrong (if it is
intended to override RQM:4) or a tautology. It is not possible to decide which
because Pienaar does not mention the context of the comparison. According to
RQM:4, the only meaning of a comparison between an event relative to F and an
event relative to W is in the context of a measurement made by a specified system.

A non ambiguous claim is:

RQM:6? Shared facts. In the Wigner’s friend scenario, ifW measures
S on the same basis on which F did, then appropriately interacts with
F to ‘check the reading’ of a pointer variable (i.e. by measuring F in the
appropriate ‘pointer basis’), the two values found are in agreement.
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We briefly anticipate the resolution of the no-go theorems, discussed in detail in
the following sections.

• Theorem 1 does not bite because it relies on Pienaar’s version of RQM:5.
• Theorem 2 relies on two assumptions that are not valid in RQM because they

misrepresent the role of the quantum state in the interpretation.
• Theorem 3 relies on RQM:6, which is incorrect.
• Theorem 4 does not bite because of RQM:5 again.
• Theorem 5 relies on RQM:5, which is incorrect.

Theorems 2, 3, and 5 offer two alternatives (two ‘horns’). As we shall discuss below,
RQM ‘grabs a horn’ in each of them. Theorem 2 elucidates what RQM is about,
while grabbing the horn in theorems 3 and 5 simply amounts to correcting Pienaar’s
mischaracterisation of RQM. Theorems 1 and 4 do not apply to RQM, for the same
important reason, they are based on the misunderstanding of the role of the quantum
state.

9.2 The analogy with relativity
The analogy between special relativity and relational quantum mechanics is often
used in presentations of the latter. Pienaar shows in detail that the relationalism
on which RQM is based is far more radical that the relationalism that underpins
classical relativity. Therefore the conceptual novelty of quantum theory cannot be
reduced to a simple recognition that all variables are relative, like velocity is relative
in mechanics. He characterises2 the relationality of RQM with the slogan “facts
are relative,” which is also correct, as we have seen in the previous chapter. On
the other hand, Pienaar’s claim that “without the conceptual analogy to classical
relativistic relations, RQM would lose its core motivation as an interpretation” is too
strong. The interest and the value of RQM does not depend on it being analogous
to something else. As any interpretation of quantum mechanics, it derives its worth
from the extent it elucidates our quantum world.

In addition, there are two other aspects of the analogy, that Pienaar disregards.
First, special relativity is a conceptual advance based on the realisation that a
previously “obvious” notion—absolute simultaneity—is in fact inappropriate to
describe the world. RQM is a conceptual advance based on the realisation that
another previously “obvious” notion—absolute facts—may in fact be inappropriate
to describe the world. (We might soon have empirical evidence for this, see [32].)
Second, there is a methodological similarity between RQM and special relativity: the
idea of searching for transparent physical principles from which the mathematical
structure of the theory can be defined. The two principles proposed in the first
paper on RQM [221], are

2He suggests changing the name of the interpretation to ‘Relative-facts interpretation of Quantum
Mechanics’. That might be appropriate, but ‘Relational’ also works, because reality relative to one
system—the collections of facts relative to that system—is composed of direct interactions this
system has with the rest of the world. Rendering facts relative is a generalisation of relativity, albeit
a drastic one.
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1. The relevant information that can be extracted from a finite region of the
phase space of a physical system is finite,

2. It is always possible to extract novel relevant information from a physical
system.

are based on the idea that the theory describes the relative information that a system
can gather about another system. As we have seen in section 3.1, these two principles
serve as the first two axioms of Höhn’s and Wever’s compelling reconstruction [130,
132, 133].

In brief, the analogy with relativity played a historical role in the development of
RQM and has some interest despite the fact that it is not complete. If the literature
on RQM has given the impression that the radical conceptual novelty of quantum
mechanics could be reduced to nothing else than some minor extension of special
relativity, this was a mistake. RQM is genuinely radical.

Let us now look at the two theorems with which Pienaar supports his claims.

No-go theorem 1

Dilemma: Suppose a system F has measured S, and this fact is verified
by a third system W who measures F -S. Then there exist situations in
which one of the following must be true:
(i) F has measured S simultaneously in incompatible bases, relative to
W;
(ii) The basis in which F has measured S is indeterminate relative to W .

Pienaar understands this dilemma to be a no-go theorem because both alternative
(i) contradicts one of the main features of quantum mechanics, while (ii) contradicts
RQM:5. The solution of the difficulty is that (ii) is correct and does not contradict
any of the RQM claims, because it is RQM:5? and not RQM:5 that characterises
RQM and (ii) is not in contradiction with RQM:5?. Underlying this, there is a
misunderstanding of the role of the quantum state in RQM. Let us see this in more
detail.

In the proof of the dilemma, a situation is considered in which the state of S −F
relative to W is

|Ψ〉SF =
∑
i

αi |xi〉S |Fxi〉F , (9.1)

where {xi} and {Fxi} denote eigenvalues of some observables X and FX of S and
F respectively. Pienaar notes that in general this Schmidt decomposition is not
unique, and one could find other observables Y and FY such that

|Ψ〉SF =
∑
n

βn |yn〉S |Fyn〉F . (9.2)

He then uses of RQM:5 (every correlation is a measurement) to derive horn (i)
of the dilemma. Since there is a correlation both between X and FX and between
Y and FY , then, allegedly, F has measured S simultaneously on the incompatible
bases X and Y . This is not the case in RQM, RQM:5 cannot be applied. All that
|Ψ〉SF tells us is which kinds of correlations exist between the variables of the two
systems, relative to W .
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The confusion arises also because of Pienaar’s use of the word ‘measurement’.
Relative to W, the only meaning that can be ascribed to the question of whether
or not F has “measured” S is whether there is a correlation between the relevant
variables of the two systems. Since there is a correlation between different pairs
of variables, in this sense and only in this sense, the “measurement” happened in
multiple bases. The strangeness of the statement is only the inappropriate use of the
expression “measurement” in this situation. If we use proper expressions, everything
returns to reasonable. With respect to W, is there a correlation between variables
of S and variables of F? Yes there is. In which basis? In more than one basis.

So, how do we know which of S’s variables became definite relative to F? We
do not, if we only know the state |Ψ〉SF . More information can be obtained from
the dynamics of the system. The state (9.1) for instance may arise as a result of an
interaction between S and F in which the evolution of F depends on the value of
the variable X of S. For example, the interaction Hamiltonian can depends on this
variable. From the perspective of F , this interaction leads to the actualisation of
the variable X of S. But the same state relative to W could arise via an interaction
Hamiltonian that depends on the variable Y , and then it is this variable that
actualises relative to F . The physics of the two processes is different, but results in
the same state relative to W, namely in the same probability distribution of events
relative to W. The final state relative to W lacks information about what happens
among subsystems.

Pienaar also refers to the observable M of the combined system S − F that was
introduced in [222]. This is an observable thatW can measure to check the existence
of a perfect correlation between certain variables:

M |xi〉S |Fxj〉F = δij |xi〉S |Fxi〉F . (9.3)

The same M can be expressed as

M |yn〉S |Fym〉F = δnm |xn〉S |Fxm〉F . (9.4)

Measuring M = 1 tells us that the correlation exists and is maximal. This is
compatible with either X or Y having taken a definite value relative to F . The
value of M on its own, does not allow W to know which variable is definite relative
to F .

The central idea of RQM is that, since the only way forW and F to communicate
is via a quantum mechanical measurement, there is no meaning to any other form of
relations between the two. Here Pienaar is equating two distinct statements: (i) a
variable of S has a value with respect to F , and (ii) with respect to W, there is a
correlation to be expected between a variable of S and a pointer variable of F . The
first implies the second, but the second does not imply the first. The second can
regard multiple bases even while the first cannot.

No-go theorem 2

This theorem expresses a contradiction between a set of three assumptions (i)-(iii)
constraining the set of possible states that two systems F and W might assign to
a third system S and the fact (iv) that not all state assignments are good states
assignments. We report here the two relevant assumptions:
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(ii) Any valid state assignment |ψ〉S by F can always be verified by W.
That is, there must exists a ‘pointer basis’ of F such that, if W were to
measure in this basis and condition on the outcome, there would be a
nonzero probability of updating the state of S relative to W to |ψ〉S .
(iii) Conversely, any assignment |ψ〉S by F which can be verified by W
(in the above sense) must be a valid possible assignment for F .

Then:

Dilemma: The set of assumptions (i)-(iii) are together incompatible
with (iv). Specifically, given that W assigns an entangled state [|Ψ〉SF ]
of the form [(9.1)], and assuming the coefficients αi are all nonzero, then
every pure state in the Hilbert space of S is a possible state relative to
F .

RQM resolves this no-go theorem by rejecting assumptions (ii) and (iii).
Again, the point is the role of the quantum state in RQM. The state does not

represent a description of reality; it is a mathematical tool to compute the likelihood
of events. Say W assigns state (9.1) to S − F and then measures FX and finds the
value Fx. Then W will have to update the quantum state of S − F to |x〉S |Fx〉F .
In no way is W allowed to conclude that F had assigned the state |x〉S to S. For W
to conclude that the new state of S relative to them is the state that S had assigned,
W would need to know that the variable X had become a fact relative to F .

Let us be even more explicit, and consider the original Wigner’s friend thought
experiment, where F is an actual human in a lab and the operational talk of the
previous paragraphs can be understood literally. Wigner knows that Friend measures
a qubit on the computational basis, and that the value of Z is then a fact relative
to Friend. Wigner assigns a state proportional to

|0〉S |F0〉F + |1〉S |F1〉F (9.5)

to the combined system. If Wigner then measures the Friend on the FZ basis and
obtains F0, he is allowed to conclude that F had assigned the state |0〉 to S. What
happens instead if Wigner decides instead to measure Friend on the complementary
basis {|F±〉 ∝ |F0〉 ± |F1〉} and obtains F+? Despite his experimental genius, he
would be a fool to entertain that Friend had assigned the state |+〉 to S! Wigner’s
choice of measuring on this complementary basis meant he had to forsake the ability
to reveal Friend’s assignment.

How radical is radical?

One point in Pienaar’s rhetoric is to emphasise the radical relationalism of quantum
phenomenology contrasting it with the consistency of the classical world. For
instance, Pienaar writes:

when two observers are in a situation where they disagree about the
state of a system in RQM, the state relative to one observer places no
non-trivial constraints on the state relative to the other observer, in stark
contradistinction to disagreements about velocity and other classical
quantities in relativity.
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The misleading aspect of this rhetoric is that it ignores the physical source of the
classical consistency. Classical consistency is not incompatible with quantum physics.
On the contrary, its origin is clarified: it is the result of constant interactions and
decoherence. Because of decoherence, the world experienced by humans is extremely
stable and because of the frequent interactions, stable facts ascertained by different
observers are in agreement. Hence, in practice, facts relative to one observer do place
strict constraints on stable facts relative to another. This is why human creatures
agree on the quantum state to assign to a system, on non-relational properties they
assign to systems, and on the existence of a shared reality. RQM does not bring
any subversion to the stability and coherence of this classical, macroscopic world.
Instead, it shows that, by recognising the ultimately relative nature of events, we can
have a coherent understanding of nature beyond the macroscopic regime in which
the approximation that facts are perfectly stable is assumed to hold.

Another rhetorical move by Pienaar is to compare the RQM terminology with
analogous terminology in different contexts. For instance, Pienaar writes

Far from having de-mystified quantum mechanics by appealing to rela-
tions, RQM has merely mystified the concept of a ‘relation’.

RQM takes the notions of physical system and quantum events happening between
systems as primary. Quantum events involve two systems, are discrete, and are
described by one variable of one system taking a value relative to the other system.
The world is not described by the individual properties of individual systems, but
by relative properties. These are called ‘relations’ because they involve more than
one system. There is nothing mystifying in this terminology. ‘Relations’ have to be
intended within this conceptual scheme, not in the conceptual scheme of classical
mechanics, where they are subsidiaries of properties of individual systems.

All things considered, the main objection that Pienaar raises to RQM is not that
it is inconsistent: it is that of being more radical than might appear at first sight.

9.3 On objectivity
This part of Pienaar’s objections have to do with the consequences of RQM:4 for
notions of objectivity and the extent to which different perspective can be shown to
agree.

No-go theorem 3

Dilemma: RQM cannot consistently maintain both the principle of
RQM:6: shared facts, and the principle of RQM:4: comparisons
are relative to one observer. Rejecting one or the other leads to the
following two horns:
(i) If RQM rejects RQM:6, then it either implies solipsism, or else an
ontology of island universes (these terms will be defined at the end of
this section).
(ii) If RQM instead rejects RQM:4, it becomes vulnerable to [no-go
theorem 4].
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As anticipated in section 9.1, Pienaar’s formulation of RQM:6, is loose enough
that it is either wrong, or a tautology. Let us see how the proof of this no-go theorem
illustrates this point. Pienaar tries to derive the contradiction in the following way.
Consider our two systems F and W interacting with S. The quantum state of S
relative to W or F will depend on the interactions between these three systems. He
proceeds:

Now suppose we have before us a description of W’s account, and a
description of F ’s account – laid out ‘side by side’ in a view from nowhere,
so to speak – and we would like to know: are these accounts mutually
consistent?

Pienaar correctly points out that

according to RQM:4, this is not a well-posed question, because there is
no ‘view from nowhere’

and yet he also holds that

RQM:6 requires that this question be well-posed, for otherwise there
would be no way to assert that two observer’s accounts are in agreement.

If Pienaar intended RQM:6 to imply that there is a ‘view from nowhere,’ from
which to compare all accounts of reality, then clearly one must reject RQM:6, as it
contradicts RQM:4. Crucially, however, there is a way to “assert that two observer’s
accounts are in agreement” (despite having rejected RQM:6): have F write down
her account and let W read it and compare it with its own.3 That W will find that
F ’s account is in agreement with his, is precisely the content of RQM:6?, which is
clearly compatible with RQM:4.

Rejecting Pienaar’sRQM:6 and replacing it with RQM:6? amounts to grabbing
horn (i) of the dilemma. Pienaar claims that this would plunge us into solipsism or
into an ontology of island universes. Would it?

Solipsism?

The claim that RQM leads to “solipsism” has appeared elsewhere, especially in
popular science (see for instance [113]).

In the philosophical literature and in common parlance, solipsism has nothing to
do with incomplete of communication between physical systems. It is instead the
idea that there is a single subject that exhausts all of reality and that the rest of
reality only exists as the experience of that single subject.

This is exactly the opposite of RQM. The main assumption of RQM, its defining
assumption, in fact, is the antithesis of solipsism: the world is not what is perceived
by a single special entity—it is a network of interactions between equal status entities.

Pienaar does eventually concede4 that probably RQM does not propose solipsism.
He correctly characterises RQM’s view: there are facts relative to every system,

3Or, in less anthropomorphised terms: let the dynamics be such that F encodes its account of S
in a suitable pointer variable and let W interact with that variable.

4In fact, it is puzzling that he chooses to levy such a charge in the first place. He recently wrote
an excellent comparison [206] between RQM and QBism, another interpretation often accused of
being solipsistic. Neither interpretation is solipsist, for the same reason.
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but that the different perspectives on reality, namely, the ensemble of facts relative
to a single system, cannot be compared in an absolute manner; they can only be
compared via a physical interaction. This is correct.

He calls this an ontology of “island universes.” We do not find the name
appropriate, let us see why.

Embodied knowledge

There is a subtle but important philosophical issue involved here. Consider the case
in which the systems F and W are actually “observers” in the rich sense of the
term. Say they are humans with laboratories, notebooks, and books, that store and
process knowledge about the world. Let us focus on F . What is the meaning of the
statement that F has knowledge about the world, for instance about S?

There are two possible answers. The first is a naturalistic answer. The second
is a dualistic or idealistic answer. According to the first, this is a statement about
the actual physical configuration of the ink and the notebooks, the charges in the
computers and the synapses in the brain in F , and about the correlations of these
with whatever can be observed in S. According to the second, F ’s knowledge is
something over and above its physical configuration. In this case, the “inaccessibility”
of F ’s knowledge, namely of the “universe as seen by F ,” is indeed there. But this
only follows because one assumes that knowledge is unphysical.

RQM adheres to a naturalistic philosophy. In a naturalistic philosophy, what F
“knows” regards physical variables in F . And this is accessible to W. If knowledge
is physical, it is accessible by other systems via physical interactions. It is precisely
for this reason that knowledge is also subjected to the constraints and the physical
accidents due to quantum theory. A physical interaction can and does destroy knowl-
edge, because of standard Heisenberg uncertainty. Hence, ultimately, the intuition
that disturbs Pienaar is a residual of anti-naturalism: the idea that knowledge can
remain immune from quantum phenomena, because it can be disembodied.

Are relative facts needed?

Clarified this (subtle) point, there remains5 in Pienaar’s [205] an objection:

this proliferation of disjoint universes is not motivated by observations,
nor does it serve any explanatory purpose.

Every interpretation of quantum theory is “motivated by observations” in the sense
that it is an attempt to devise a conceptual scheme that makes sense of a vast
number of observations. More precisely, to make sense of the fact that observations
are well described by quantum theory. As such, it is deeply rooted in observations:
without observations, quantum theory—and its tentative interpretations—would
never have appeared.

More to the point, what is the explanatory purpose of the multiplication of
perspectives in RQM? The answer is that it offers a possible explanation to the key
mystery of quantum physics: the apparent special role that “observers” seem to
have in the theory. RQM illuminates this mystery by denying that there is anything

5Brukner reported a similar concern in an email [37].
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special in observers, in the following general sense: facts happen relative to any
system (RQM:1). What is special in a (large class) of macroscopic observers is
only that decoherence and frequent interactions stabilise and render consistent for
them many relative facts. RQM is the observation that quantum physics can be
made sense of also beyond the limit of perfect decoherence.

Thus, the “explanatory purpose” of RQM’s multiplication of perspectives (the
idea that facts happen at interactions between any two systems) is that it serves as
a possible solution to the measurement problem. It helps to answer questions like:

• Q: When does something become a fact?
A: Something becomes a fact, relative to you, when you interact with a system.

• Q: How does Schrödinger’s cat feel?
A: Either awake looking at the vial, or asleep having a dream. The cat does
not stop having experiences only because the box is sealed off from the rest of
the lab.

• Q: What physical systems are measuring apparata?
A: Any system whose pointer variables (i) get appropriately entangled to a
variable you are interested and (ii) with which you can interact.

• Q: When does the wavefunction collapse?
A: The wavefunction for S relative to W collapses whenever W interacts
with—gets a kick from—S and therefore W gathers information about S.

Island universes

The expression “island universes” that Pienaar uses to RQM’s discredit is taken
from Huxley’s The Doors of Perception [141], where “island universes” is applied to
conscious experiences. The situation with conscious experiences is in fact analogous
to that in quantum physics, but instead of weakening the motivation for postulating
multiple perspectives, it strengthens it.

Let’s see. Do we have direct evidence that other humans have a first-person
experience of reality like ours? We do not. Do we hold that thinking of other humans
as having experiences like ours is a hypothesis that is “not motivated by observations,
nor [serves] any explanatory purpose”? Of course not! The alternative is to think
that we ourselves are the only conscious being in the universe. This is solipsism! We
have ample reasons to believe that we share conscious experiences with (at least)
other humans. By the same token, RQM points out that we have reasons to believe
that we share the reality of perspectival facts with any physical system.

This is the core of RQM: we understand that we are normal physical systems
and, as such, we are affected by the rest of reality. Hence we make a reasonable
extrapolation, based on this and on our realisation that we are not special. We have
no reason to believe that reality comes into being only when it interacts with us, and
not also when anything interacts with anything else. That there is no fundamentally
distinguished class of systems called “the classical world” or “measuring apparata”
that have the privileged ability of actualising the variables of other systems.

Finally, Pienaar complains that the different “views” do not “share facts”. Here,
Pienaar puts undue restrictions on what is a shared fact. The analogy with conscious
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experience helps us here, too. Can two people “share” the same experience? It
depends what we mean by that. If we mean to ask if two people can have the exact
same set of sensory experiences at the same time and think the exact same thoughts,
then clearly no. But this is not how we normally understand the phrase. We share
experiences when we listen to the same performance of an orchestra, when we watch
a movie together, when we analyse the same object together. And we can verify
that we are sharing experiences by comparing our mental lives—not in some sort of
absolute external sense, but by interacting with (talking and listening to) each other.
The two internal mental lives are still different after talking, but the two people can
nevertheless reach an intersubjective agreement.

In the ontology of RQM, two systems F and W cannot share the same facts
about a third system S in the sense that whenever there is a quantum event for F ,
there is also immediately a quantum event for W. It is not even the case that a
later interaction between W and F can make a previous quantum event between S
and F a quantum event for W. What they can do, however, is verify that there is
a consistency between their shared perspective, by interacting with (or measuring,
as Pienaar puts it) each other. In this sense, F and W end up sharing facts: the
behaviour of F and S that W observes is coherent with the assumption that F sees
the same S as W does.

The fear that this destroys the coherence of the world or throws us into a
solipsistic nightmare is similar to the fear that by setting the Earth in motion
Copernicus challenged the stability of the houses built on Earth. Yet, quantum
physics teaches us that W could also interact with F in a way that destroys F
account of their previous interaction with S. Is this surprising? Perhaps, but this is
what quantum physics implies.

The loose frame loophole

Pienaar also raises a concern regarding the ambiguous way in which some RQM
literature talks about facts relative to different systems. This is a valid concern. It
has already been echoed out by at least one other source [248]. This ambiguity is a
defect of the original literature.

Statements such as “when two systems F and W interact with a system S, the
perspectives of W and F agree, and this can be checked in a physical interaction”,
which can be found in the RQM literature, mean only that W can interact with
F ’s pointers and check that they were affected in its interactions with S in a way
consistent with what W directly learns about S. This is the content of RQM:6?
again. Obviously, F can do the same with W (RQM:1).

This is normally left implicit whenever one talks about facts relative to different
observers, assuming that it is clear enough to fill in the gaps. This is sometimes
easier and sometimes harder. Indeed, Pienaar brings up [85] (from which chapter 8
was adapted) as an example in which things are more complex than even the authors
of the original paper realised. Let us look at this example in detail and make sure
that the loophole is closed, as this can serve as an example for other situations.

The central point of 8 and [85], is the definition of a stable fact. A fact relative to
F is said to be stable for W if classical probability calculus can be used to compute
the probability of an event for W using this fact relative to F . More specifically,
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assume that, from W’s perspective, F interacts with a variable A of S; According
to RQM:1? and RQM:4?, this interaction may result in the value of A to become
a fact relative to F , but no fact is established relative to W. However, the value
of A relative to F is considered stable for W if, in computing the probability for a
variable B to taking the value b relative to W in a subsequent interaction, we can
write:

P (b(W)) =
∑
i

P (b|ai)P (a(F)
i ). (9.6)

In the formula above, we have inserted superscripts to highlight that stability
allows to mix perspectives. At an operational level, it allows to reason as if there is
epistemic uncertainty about the value of A relative to W , even though, ontologically,
A does not have an actual value relative to W. The conditional probability

P (b|ai) = | 〈b|ai〉 |2 (9.7)

does not need6 superscripts: the transition probabilities are the main outputs of
quantum theory and they define the probability of facts relative to a system, given
other facts relative to the same system.

Pienaar expresses his doubts that a formula like (9.6) can ever make sense in
RQM, as it relates probabilities of facts relative to different systems. Indeed, while
quantum theory allows the computation of the transition probabilities P (b|ai) as well
as the probability P (b(W)) (given the state of S − F relative to W), the quantities
P (a(F)

i ) do not have meaning in RQM, a priori. But this is precisely the point of the
definition. The P (a(F)

i ) acquire this meaning when the relation between P (b(W)) and
P (b|ai) is given by (9.6). In other words, when the interaction between S and F (as
described by W) is such that (9.6) holds for some probability distribution P (a(F)

i ),
then P (a(F)

i ) acquires the meaning of a probability distribution over the possible
values of A—even though the value of A is not a fact relative to W . The value of A
might be a fact relative to F , hence the superscript. We invite the reader to revisit
section 8.1.2 as a concrete example.

As Pienaar remarks, the de-labelling is only methodological. Even when (9.6)
holds, there is no ontological identification of a fact relative to F with a fact relative
to W . For all practical purposes, different systems in the same stability class act as
if they live in a macroreality of absolute facts and as if they share facts.

No-go theorem 4

This theorem is the second horn of the dilemma that no-go theorem 3 was supposed
to offer. We grabbed the first horn, so we are not required to answer to this, but we
will do anyway, because is another example of the mischaracterisation of the role of
the quantum state. The theorem is in a form of a trilemma:

Trilemma: The propositions P1 & P2 and the claim RQM:3 cannot
all be true.

6In [85], we wrote P (b(W)|a(F)
i ), but, as Pienaar remarks, this notation is highly misleading; a

better notation would have been P (b(W)|a(W)
i ). Better still to omit the superscript as we have done

in chapter 8, since the transition probabilities given by the Born rule (9.7) are independent of the
context W.
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where

P1. W can measure F -S in any basis at Event 2, independently of which
basis F measured S at Event 1.

and

P2: Suppose W measures F-S in the {|Fym〉 |yn〉} basis and obtains
some outcome, updating the state relative to W to one of the states
in {|Fyn〉 |yn〉} just after Event 2. Then we can interpret this state as
indicating that ‘F measured S in the {|yn〉} basis and obtained one of
the outcomes in the set {yn} at Event 1’.

The solution is simple: P1 and RQM:3 are true in RQM, while P2 is false. This is
again caused by the wrong formulation of RQM:5. The fact that S − F is in the
state |yn〉S |Fyn〉F does not imply that the value of Y is a fact for F . Indeed, one
way to prepare such a state is to start with S and F uncorrelated and just rotate
each system separately into |yn〉S |Fyn〉F . In this case S and F never interacted and
there could not be a fact about S relative to F . Or, in the operational language, F
did not measure S.

No-go theorem 5

This last no-go theorem again fails because of Pienaar’s wrong formulation of
RQM:5. The theorem considers particular states of the S − F system and tries
to derive something about facts of S relative to F from these states. Again, this
is not a possible logic in RQM. The states in question (as Pienaar himself points
out) are states relative to W. What they contain is information about what W can
measure, namely how the S −F system has affected W or can affect W is the future.
Trying to read out from these states the full facts relative to F is is not something
compatible with RQM.

9.4 Qubits are not observers
Let us now come to Brukner’s no-go theorem [38]. Like Pienaar’s results, this is
a correct mathematical observation that, instead of providing a criticism of RQM,
serves to sharpen the interpretation. His explicit aim is presented in the introduction:

I will derive a no-go theorem that restricts the possibility of understanding
the relational description in RQM as knowledge that one system can
have about another in the conventional sense of that term.

Part of what makes Brukner’s result seem a challenge towards RQM, is Brukner’s
use of operational language (such as “measurement,” “observer,” and “knowledge”)
to formulate his no-go theorem even though, as he himself remarks, “RQM makes
not reference to [these] concepts”. The other aspect that contributes to the confusion
is his overplaying the role of the quantum state. Like in Pienaar’s no-go theorems 1,
2, 4, and 5, Brukner tries to read relative facts between two systems by looking at
the state assigned to these by a third system, while RQM does not allow this.
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The setup of the theorem is essentially that of Pienaar’s no-go theorem 1. Two
systems7 S and O are in some potentially entangled state |ψ〉SO. Note that here O
stands for “observer”; there is no restriction on the nature of S and O (they can be
qubits); and Brukner does not specify what the state |ψ〉SO is relative to, we take it
as relative to a third system W . The theorem states that the two following things
cannot both be true.

1. (DefRS) Definite Relative State For any set of states {|xi〉S , |Xi〉O}
such that

|ψ〉SO =
∑
i

ci |xi〉S |Xi〉O , (9.8)

[...] the states |Xi〉O are states of knowledge of the observer. When the
observer is in state |Xi〉O she knows that the system is in the definite
relative state |xi〉S .

2. (DisRS) Distinct Relative State The observer’s states of knowl-
edge |X〉O and |X〉O, which are correlated with distinct relative states
|x〉S and |x′〉S of the system, are represented by orthogonal vectors in
the observer’s Hilbert space, i.e. if |x〉S 6= |x′〉S , then 〈X|X ′〉 = 0.

The proof of the theorem is pretty straightforward, as it also employs that the
Schmidt decomposition of an entangled state need not be unique.

Since RQM makes no appeal to a notion of knowledge, it is not clear why this
should be a challenge to RQM. From RQM’s perspective, Brukner’s result ostensibly
is a no-go theorem about the meanings that the word “knowledge” can assume, given
what we know about quantum mechanics. Indeed, we see two ways of reading this
result, either

• DefRS is taken as a definition of the word “knowledge,” and then DisRS is
false, or

• DisRS is a constraint on what can be a “state of knowledge”, and then DefRS
is false.

Le us consider these two options in turn.
If we take DefRS to define knowledge, then O has knowledge about S in the

sense that W can learn about the probabilities of future interaction with S by
interacting with O. This is the same well-defined sense in which a given set of
pixels on a computer screen have knowledge about the time and a given set of
ink molecules in a book have knowledge about lasers: by interacting with those
molecules we expect to learn about future interactions with coherent light. In this
sense, “knowledge” is nothing more—and nothing less—than correlations between
two systems, as expected by a third. Then the failure of DisRS tells us nothing
we didn’t know already: when S and O are entangled, interacting with different
variables of S affects our information about different variables of O.

Consider now using DisRS as a constraint on what is a state of knowledge.
Then the failure of DefRS implies that one has to have correlations on a preferred
basis before talking about knowledge. This is closer to the other meaning of the

7We switch from S and F to S and O to be closer to Brukner’s [38].
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word “knowledge” as applied to complex systems such as agents and conscious
observers. This is perhaps “the conventional sense” that Brukner has in mind in
the introduction. Note that this is still a naturalistic use of the world, as it refers
to the physical properties of such observer. Then a superposition of two states of
knowledge is not a new state of knowledge, but a superposition of two states of
knowledge.

Both choices are valid. The only problem is confusing the different possible
meanings of the word knowledge. And that is why the RQM literature warns against
using terms that are normally reserved for macroscopic physics when talking about
the fundamental elements of the theory.

In sum, we agree with Brukner that “qubits are not observers,” for the un-
controversial fact that qubits are not decision-making agents capable of processing
information. That has never been a claim of RQM. The controversial claim that RQM
makes is RQM1? (facts happen relative to any physical system). Brukner’s
no-go theorem has no impact on this, since a state such as (9.8) that W assigns to
S and O is not enough for W to infer what might or might not be a fact for O, as
explained in detail in section 9.2 when discussing Pienaar’s no-go theorem 1.

9.5 Conclusion
Pienaar’s [205] presents arguments against two ideas: that (i) RQM preserves certain
classical relativistic intuitions about relations and that (ii) it preserves the idea
that consistency can be established between different observers’ accounts. Both
conclusions are correct: (i) RQM does not preserve certain classical relativistic
intuitions about relations: it extends them and makes them more radical (“facts
are relative”). And, (ii) RQM does not preserve the idea that consistency can be
established between different observers’ accounts. It replaces it with the idea that
systems communicate in the sense that they can measure (quantum mechanically!)
each other’s pointer variables. Since I myself am an observer, I find nothing strange
in the idea that you could read pointer variables in me that get correlated with
external variables when these are realised with respect to me. Brukner’s [38] argues
that if we want to call the entanglement of two systems “knowledge” that the two
systems have about one another, then this “knowledge” differs in some radical way
from common usage.

These objections do not challenge the coherence of RQM. They maybe show that
RQM is more radical than what it might appear at a first sight.

Does an ontology where views cannot be compared directly and physical systems
can only check each other via quantum measurements imply solipsism? No, it
does not. Does it change in depth our way of thinking about reality? Yes it does.
Quantum mechanics is radical. One way or the other, we have to embrace it, not
try to tame it.
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Conclusion

The meeting of quantum gravity with quantum information theory and quantum
foundations research is an exciting development in fundamental physics. The work
reported in this thesis covers a fraction of the possibilities and themes of this new
interdisciplinary field.

We have considered in detail one of the opportunities it created: the exciting
prospect of empirically testing a quantum gravity prediction—superpositions of
geometry—via the detection of gravity mediated entanglement. This will be a
landmark experiment that will rule out either all classical field theories of gravity
or quantum gravity itself. In chapter 4, we have seen an example of how quantum
computation and quantum optics can help illuminate the claims of this experiment,
and prepare for its practical applications. In chapter 5, we used standard quantum
field theory techniques to see how the quantum information claim that observing
gravitationally mediated entanglement certifies non-classicality of the gravitational
field applies to linearised quantum gravity, our best theory of quantum gravity in
this regime. We have also derived formulas which can be used to quantitatively test
this theory using this experiment. In chapter 6, we saw how a similar experimental
setup would allow us to probe time intervals at unexplored regimes, and try to
observe planckian discreteness of time by observing discontinuities in the phase of
an interferometer in weak gravitational fields.

An exciting prospect for low energy exploration of quantum gravity in the lab is
the recreation of geometrical-like properties through the engineering of entanglement.
Several authors, have argued on different theoretical grounds for the existence of a
deep link between geometry and entanglement [27, 41, 131, 142, 162]. Advances in
quantum control of matter might soon allow to explore this connection in the lab
using low energy quantum systems [203]. Connecting the approaches of geometry
from entanglement and quantum superpositions of geometry, both experimentally
and theoretically, would be an exciting research direction.

On the theoretical side, recent developments in the subject of quantum reference
frames [14, 116, 257] represent another interesting confluence in the methods and
research of quantum gravity and quantum information theory. It has lead to a
unification of three major approaches to resolving the problem of time in quantum
gravity [129]. This work on quantum reference frames relates the concepts of gauge
redundancy with the choice of reference frame. It allows to “switch perspectives,”
change the quantum system that acts as a reference frame. A striking aspect from
the point of view of this thesis: switching perspective does not entail collapsing
the wavefunction, hence this approach seems more natural from an Everettian
interpretation of the wave function. It would be interesting to study how this
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formalism describes the Wigner friend scenario, and how it relates to the idea of
relative facts.

But there are also tensions in this interdisciplinary convergence. The communities
of quantum gravity, on one side, and quantum information and foundations on the
other, tend to have a different regard for the status of operationalism, agency, and
causality. In chapter 7, we argued that the time-orientation of the operational
formalism can be understood as the time-orientation of agents and laboratories. Two
related challenges follow from this observation. The first, mathematical: how to
adapt the operational formalisms to a time-reversal symmetric formalism [82]. To
this aim, the formalisms introduced in [126] and [235] seem to be important strides
in this direction. The second, harder: to derive a convincing model of the connection
between the thermodynamic arrow of time and the time-orientation of agency. At
the moment, the relation between the thermodynamic arrow of time and the arrow
of causation is not known.

Looming above all, the interpretation of quantum mechanics. The approach
used in practice, the no-interpretation approach, is well-suited for laboratory physics
but it is of dubious application for fundamental physics. Arguably, if agency is
not a fundamental aspect of the physical world but emergent from microphysics,
concepts of observers and measurement apparata are out of place in fundamental
formulations of physics. The relational interpretation of quantum mechanics was
developed without observers and measurements as primitives, with the problem
of quantum gravity in mind [221]. This interpretation is based on the concept of
relativity of facts. Surprisingly enough, we are starting to have experimental evidence
for the relativity of facts [32, 212]. Results from experimental metaphysics [32]
show that local, non-superdeterministic theories cannot explain certain experimental
phenomena without invoking the relativity of facts. In chapters 8 and 9, we fleshed
out some of the consequences of the relativity of facts from the point of view of
relational quantum mechanics. We saw how the classical world emerges from relative
facts and to what extent different systems inhabit the same world. However, relative
facts force us to re-think our notions of locality [169, 204] and of events happening
in spacetime [50], and much work remains to be done.

I hope this thesis manages to convey a fraction of the beauty, possibility, and
mystery that stem from exploring space and time with the aid of low energy quantum
systems, a field which opens a new door for the empirical exploration fundamental
physics.
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Appendix A

Works related to chapter 7

The exploration of the time-symmetry of quantum uncertainty started early with
Einstein, Tolman, and Podolski [95] already noting in 1931 that “the principles of
quantum mechanics actually involve an uncertainty in the description of past events
which is analogous to the uncertainty in the prediction of future events.”

Aharonov, Bergmann, and Lebowitz [4] built a time-symmetric theory out of
quantum theory by considering the frequencies of outcomes of a sequence of projective
measurements in ensembles constructed by pre- and post-selection. They note that
this theory is time-symmetric in the sense that the frequencies observed in one
ensemble are the same as the ones observed in the ensemble prepared by swapping
the pre- and post-selection and performing the measurements in the reversed order.
They note that probabilities calculated based only on preselection are experimentally
accurate, while probabilities calculated only on post-selection are insufficient. They
argue that this time-reversal asymmetry is not inherent to quantum mechanics but
is a consequence of the asymmetry of the macroscopic world. Finally they advance
that this asymmetry should be represented by adding a time-asymmetric postulate
to the time-symmetric theory. This postulate is the precursor of the “no signalling
from the future” axiom. In light of the argument in this chapter, there is no need to
build a time-symmetric theory and then break the symmetry. Quantum mechanics
is already symmetric in the sense that generally it does not distinguish prediction
and postdiction, or the past from the future. Time-reversal asymmetry is a feature
of the operational formulations of quantum theory.

While Aharonov et. al. [4] considered a sequence of measurements “sandwiched”
between selection events, the setup in this chapter is similar to that in [259], where
Watanabe was concerned with calculating the probabilities for a past or future event
given a present event. Watanabe introduced retrodictive quantum mechanics, where
a state is assigned to the system based on present data and then evolved to past
times. Like Aharonov et. al., Watanabe remarks that “blind retrodiction,” (i.e.
what we call prediction in this chapter: retrodiction with flat priors on the past
events) does not work well in practice because agents in the past can decide to
interrupt or go on with the experiments. Watanabe also recognises that inference is
inherently asymmetric and can run in either direction of time, starting from data at
a given instant.

Retrodictive quantum mechanics has been further developed over the decades
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by Barnett, Pegg, Jeffers and collaborators [12, 198, 247], who devised general
postdiction formulas, including ones equivalent those we derive in sections 7.2 and
7.4.2 for postdiction in closed systems and for quantum channels respectively. Our
contribution to retrodictive quantum mechanics is twofold. First, we propose the
explanation of the asymmetry between prediction and postdiction in quantum
channels in terms of implicit data about the past of a purifying system. Secondly, we
prove no-signalling from the unknown, which is a property of quantum mechanics,
and in particular of retrodictive quantum mechanics, that to our knowledge has not
been recognised before. We also pay attention to the conceptual difference between
retrodiction and time-reversal, and we relate these two concepts.

Leifer and Pusey [157] consider a similar prepare-and-measure scenario as us
and investigate what time-symmetry can imply on possible ontological models for
quantum theory. Their definition of an operational time reverse formally equivalent
to what we call an active time-reversal. They define operational time-symmetry as
the existence of an operational time reverse. They derive a fascinating no-go theorem
for ontic extensions (aka hidden variable models) of operational time-symmetric
processes. We share the belief that operational time-symmetry is an essential feature
of quantum mechanics, but we do not concern ourselves with ontic extensions.
Instead, we are interested in understanding why not all quantum channels are
operationally time-symmetric. We also study the difference and relation between
postdiction and time-reversal, prove that operational time-symmetry is equivalent
to inference symmetry.

Oreshkov and Cerf [192] define an extension to operational quantum theory,
allowing for a “notion of operation that permits realisations via both pre- and
post-selection.” Their motivation for building a new theory is stated in the abstract:
“The symmetry of quantum theory under time reversal has long been a subject of
controversy because the transition probabilities given by Born’s rule do not apply
backward in time.” Our work shows that the Born rule applies equally well in both
directions in time—as long as we treat prediction and postdiction on equal footing.
We argue that the asymmetry of operational quantum theory reflects the asymmetry
of the agents, not the asymmetry of quantum phenomena per se.

The work in this chapter was inspired by conversations at the QISS conference
at HKU and at the QISS virtual seminars [188], where it transpired that the time-
asymmetric operational formulation obfuscated the fundamental time-symmetry of
quantum theory.

The importance of separating the physical from the inferential in quantum
mechanics is a more modern idea, perhaps traceable to E.T. Jaynes who famously
compared quantum theory to an omelette to be unscrambled [145]. The QBists see
quantum theory as not much more than the correct probability calculus to use in
our world [108]. Caticha has often emphasised the importance of understanding
probability first and foremost as an inferential tool [46]. Leifer and Spekkens [158]
have formally developed the analogy between quantum probabilities and Bayesian
inference. They introduce a notion of “quantum conditional states” representing
sequential and parallel quantum experiments and prediction and postdiction on
the same footing, just like in classical probability theory. In our work, we limit
ourselves to classical probability theory. At first, we use the Born rule to obtain
classical conditional probability distributions Ppre(x|a, U) for prediction probabilities
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in sequential experiments. We show that the Born rule actually can be used to
compute prediction and postdiction probabilities.
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Appendix B

Computation in EM

The action for electromagnetism coupled to a four current jµ is of the form S =
SM + SA with

SA =
∫

d4x

(
− c2

16πke
FµνF

µν + jµA
µ

)
. (B.1)

Here, d4x = dtd3x, SM is the free matter action that also includes the B0 coupling
to the spins, Aµ is the four-potential, Fµν = ∂µAν−∂νAµ is the field strength and ke
Coulomb’s constant. We use greek indexed latin letters for 4–vectors and bold latin
letters for 3–vectors. The metric signature is (−,+,+,+) and ηµν is the Minkowski
metric.

The action SA is gauge invariant. We will express the Lagrangian in the Lorentz
gauge ∂µAµ = 0 to simplify calculations. Boundary terms at infinity are taken to
vanish. Integrating by parts, the action then reduces to

SA =
∫

d4x

(
− c2

8πke
∂µAν∂

µAν + jµA
µ

)
, (B.2)

and the equations of motion are

�Aµ = −4πke
c2 jµ, (B.3)

where � = ∂µ∂
ν .

Now, we obtain the on–shell action by placing (B.3) into (B.2) and integrating
again by parts to obtain

Sos
A = 1

2

∫
d4x jµA

µ. (B.4)

The entire contribution of the electromagnetic field to the on–shell action is encoded
in this expression. As we saw in the main text, Sos

A is the central object of interest
for induced entanglement: this Lorentz covariant and gauge invariant quantity is
the observable that would be measured in an experiment aiming to observe induced
entanglement.

We now consider the electromagnetic interaction of two point charges. The
four-current is given by

jµ(x) =
∑
a

qav
µ
a (t)δ(3)(x− xa(t)), (B.5)
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where vµa (t) = (c, dxa/dt) = (c,va). From the equations of motion, assuming no
radiation incoming from past infinity, the potential of this charge configuration is
given in the Lorentz gauge by the well-known Liénard–Wiechert potentials [121]

Aµ(t,x) = ke
c2

∑
a

[
qav

µ
a

da − da · va/c

]
t=ta

(B.6)

with da(t) = x− xa(t), da = |da|. Crucially, all quantities on the right hand side
are evaluated at the retarded time ta, defined implicitly as the solution of

cta = ct− da(ta). (B.7)

The retarded time ta is the time t at which the past lightcone of (t,x) intersects the
(timelike) trajectory of particle a.

By placing (B.6) and (B.5) in (B.4) and performing the space integration, we
get an explicit expression for the on–shell action giving the interaction between the
two charges

Sos
A = ke

2c2

a6=b∑
a,b

∫
dt qa qb v

µ
a (tab) vbµ(t)

dab(t)− dab(t) · va(tab)/c
. (B.8)

Here, the retarded time tab is defined as the implicit solution of

ct− ctab = |xb(t)− xa(tab)| (B.9)

and we also defined
dab(t) = xb(t)− xa(tab) (B.10)

and dab = dab.
In the slow moving approximation |va| � c, the exact expression (B.8) approxi-

mates to

SosF = −1
2ke

a6=b∑
a,b

∫
dt qaqb
dab(tab, t)

. (B.11)
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