Can we think timelessly about causation?

Andrea Di Biagio

4 Dec 2020
Qubits and Spacetime Interview/Talk

Starting tension

No signalling from the future: An OPT is causal if the probabilities of an operation do not depend on the choice of any later operation.

$$
\stackrel{\overline{\bar{\top}}}{\bar{\Phi}}=\overline{\bar{T}}
$$

Relativistic Causality: A change in the initial data in a region S, does not produce any change in the regions outside the causal past and future of S.

Reconstructions

Lucien Hardy, "Quantum Theory From Five Reasonable Axioms," (2001), arXiv:quant-ph/0101012.
Borivoje Dakic and Časlav Brukner, "Quantum theory and beyond: Is entanglement special?" (2009), arXiv:0911.0695 [quant-ph].
Lluís Masanes and Markus P. Müller, "A derivation of quantum theory from physical requirements," New Journal of Physics 13, 063001 (2011).
G. Chiribella, G. M. D'Ariano, and P. Perinotti, "Informational derivation of Quantum Theory," Physical Review A 84, 012311 (2011), arXiv:1011.6451.
Lucien Hardy, "Reconstructing quantum theory," (2013), arXiv:1303.1538 [gr-qc, physics:hep-th, physics:quant-ph].
Philipp A. Höhn, "Toolbox for reconstructing quantum theory from rules on information acquisition," Quantum 1, 38 (2017), arXiv:1412.8323.

Philipp A. Höhn and Christopher Wever, "Quantum theory from questions," Physical Review A 95, 012102 (2017), arXiv:1511.01130.
John H. Selby, Carlo Maria Scandolo, and Bob Coecke, "Reconstructing quantum theory from diagrammatic postulates," arXiv:1802.00367 [quant-ph] (2018), arXiv:1802.00367 [quant-ph].
Ding Jia, "Quantum from principles without assuming definite causal structure," Physical Review A 98, 032112 (2018), arXiv:1808.00898.
Robert Oeckl, "A local and operational framework for the foundations of physics," Advances in Theoretical and Mathematical Physics 23, 437-592 (2019), arXiv:1610.09052.

Starting tension

Does quantum mechanics imply time orientation?

Plan

- Quantum Information and the arrow of time
- Towards time-symmetric causation
- Next steps

Plan

- Quantum Information and the arrow of time
- Towards time-symmetric causation
- Next steps

Two Games

Prediction vs Postdiction

Prediction: Given a preparation, a test and the result of the

 preparation, calculate the probabilities of the outcomes of the test.Given

find $\quad P_{p r e}\left(x_{j} \mid a, \Phi\right)$

Prediction vs Postdiction

Postdiction: Given a preparation, a test and the result of the test, calculate the probabilities of the outcomes of the preparation.

Given

find

$$
P_{\text {post }}\left(a_{i} \mid x, \Phi\right)
$$

Closed Systems

Given

Born rule

$$
\left.P_{\text {pre }}(x \mid a, U)=|\langle x| U| a\right\rangle\left.\right|^{2}
$$

Bayes' theorem

$$
P_{p o s t}(a \mid x, U)=\frac{P_{p r e}(x \mid a, U) P(a)}{P(x)}
$$

What are $P(a)$ and $P(x)$?

Closed Systems

We are doing inference using the Born rule.
$P(a)$ and $P(x)$ are a priori probabilities.
Prior $P(a)=\frac{1}{d}$
Data $\left.P(x)=\sum_{i=1}^{d} P_{p r e}\left(x \mid a_{i}, U\right) P\left(a_{i}\right)=\sum_{i=1}^{d}|\langle x| U| a_{i}\right\rangle\left.\right|^{2} \cdot \frac{1}{d}=\frac{1}{d}$

$$
P_{p o s t}(a \mid x, U)=\frac{P_{p r e}(x \mid a, U) P(a)}{P(x)}=P_{p r e}(x \mid a, U)
$$

Closed Systems

We are doing inference using the Born rule.
$P(a)$ and $P(x)$ are a priori probabilities.
Prior $P(a)=\frac{1}{d}$
Data $\left.P(x)=\sum_{i=1}^{d} P_{p r e}\left(x \mid a_{i}, U\right) P\left(a_{i}\right)=\sum_{i=1}^{d}|\langle x| U| a_{i}\right\rangle\left.\right|^{2} \cdot \frac{1}{d}=\frac{1}{d}$

$$
\left.P_{p o s t}(a \mid x, \Phi)=|\langle x| U| a\right\rangle\left.\right|^{2}=P_{p r e}(x \mid a, U)
$$

Time agnostic probabilities

A process Φ is inference symmetric if:

$$
P_{p r e}\left(x_{j} \mid a_{i}, \Phi\right)=P_{p o s t}\left(a_{i} \mid x_{j}, \Phi\right)
$$

for any choice of bases.

Closed quantum systems are inference symmetric.

Time-Reversal

Passive: Describe physical events in reversed order.
Active: Find a process that undoes the original process.

Open Systems

$$
P_{\text {pre }}(x y \mid a b, U)=P_{\text {post }}(a b \mid x y, U)
$$

$$
P_{p r e}(x \mid a b, U)=\sum_{i=1}^{d_{Y}} P_{p r e}\left(x y_{i} \mid a b, U\right)
$$

$$
P_{p r e}(x y \mid a, U)=\frac{1}{d_{B}} \sum_{i=1}^{d_{B}} P_{p r e}\left(x y \mid a b_{i}, U\right)
$$

Open Systems

$$
\begin{gathered}
P_{p r e}(x y \mid a b, U)=P_{p o s t}(a b \mid x y, U) \\
P_{p o s t}(a b \mid x, U)=\frac{1}{d_{Y}} \sum_{i=1}^{d_{Y}} P_{p o s t}\left(a b \mid x y_{i}, U\right) \\
P_{p o s t}(a \mid x y, U)=\sum_{i=1}^{d_{B}} P_{p o s t}\left(a b_{i} \mid x y, U\right)
\end{gathered}
$$

Direction of inference

$$
=P_{p o s t}(a \mid x y, U)
$$

$\frac{x \bar{x}}{\frac{1}{1}}{ }^{\frac{1}{d_{Y}}}=P_{\text {post }}(a b \mid x, U)$
$\frac{1}{\sqrt[b]{b}}$

Direction of inference

$$
\begin{aligned}
& P_{\text {pre }}(x \mid a b, U)=d_{Y} P_{p o s t}(a b \mid x, U) \\
& P_{\text {pre }}(x y \mid a, U)=\frac{1}{d_{B}} P_{\text {post }}(a \mid x y, U)
\end{aligned}
$$

Inference symmetry broken in the simplest way

Channels

A quantum channel is represented by a CPTP map.

$$
\text { 浐 }=\bar{\top}
$$

Channels

Given

$$
\begin{array}{lc}
\left\{\begin{array}{c}
\left\langle x_{j}\right\rangle \\
\hline
\end{array}\right\} & \text { Generalised Born rule } \\
\left\{\left.\begin{array}{|c|}
\hline
\end{array} \right\rvert\,\right. & P_{p r e}(x \mid a, \Phi)=\operatorname{tr}|x\rangle\langle x| \Phi[|a\rangle\langle a|]
\end{array}
$$

Bayes' theorem

$$
P_{p o s t}(a \mid x, \Phi)=\frac{P_{p r e}(x \mid a, \Phi) P(a)}{P(x)}
$$

Channels

Prior $P(a)=\frac{1}{d_{A}}$
Data $\left.P(x)=\sum_{i=1}^{d_{A}} \frac{1}{d_{A}} P_{p r e}\left(x \mid a_{i}, \Phi\right)=\frac{1}{d_{A}} \operatorname{tr}|x\rangle x \right\rvert\, \Phi\left[\square_{A}\right]$

$$
P_{p o s t}(a \mid x, \Phi)=\frac{\operatorname{tr}|x\rangle\langle x| \Phi[|a\rangle\langle a|]}{\operatorname{tr}|x\rangle\langle x| \Phi\left[\square_{A}\right]}=\frac{P_{p r e}(x \mid a, \Phi)}{\operatorname{tr}|x\rangle\langle x| \Phi\left[\square_{A}\right]}
$$

Inference Symmetric Channels

$$
P_{\text {post }}(a \mid x, \Phi)=\frac{P_{\text {pre }}(x \mid a, \Phi)}{\left.\operatorname{tr}|x \backslash x| \Phi[]_{A}\right]}
$$

$$
\frac{1}{\stackrel{\perp}{ \pm}}=\frac{\perp}{=}
$$

A channel is inference symmetric iff it is bistochastic.

Purification

Any quantum channel can be understood in terms of a unitary interaction with an ancilla system.

This allows us to understand the inference asymmetry of the quantum channels.

$$
P_{p o s t}(x \mid a, \Phi)=P_{p o s t}\left(a \mid x b, U_{\Phi}\right)
$$

Purification

$$
P_{p o s t}\left(a \mid x b, U_{\Phi}\right)=\frac{P_{\text {post }}\left(a b \mid x, U_{\Phi}\right)}{P_{p o s t}\left(b \mid x, U_{\Phi}\right)} \quad \mathrm{p}(a \mid b)=\frac{\mathrm{P}(a b)}{\mathrm{p}(b)}
$$

$$
\begin{aligned}
P_{\text {post }}\left(a b \mid x, U_{\Phi}\right) & =\frac{1}{d_{Y}} P_{p r e}\left(x \mid a b, U_{\Phi}\right) \\
P_{\text {post }}\left(b \mid x, U_{\Phi}\right) & =\frac{d_{A}}{d_{Y}} P_{p r e}\left(x \mid b, U_{\Phi}\right)
\end{aligned}
$$

$$
P_{p o s t}\left(a \mid x b, U_{\Phi}\right)=\frac{P_{p r e}\left(x \mid a b, U_{\Phi}\right)}{d_{A} P_{p r e}\left(x \mid b, U_{\Phi}\right)}
$$

Purification

$$
P_{p o s t}\left(a \mid x b, U_{\Phi}\right)=\frac{P_{p r e}\left(x \mid a b, U_{\Phi}\right)}{d_{A} P_{p r e}\left(x \mid b, U_{\Phi}\right)}
$$

$$
\begin{aligned}
& P_{\text {pre }}\left(x \mid a b, U_{\Phi}\right)=P_{\text {pre }}(x \mid a, \Phi) \\
& P_{\text {pre }}\left(x \mid b, U_{\Phi}\right)=\sum_{i=1}^{d_{A}} \frac{1}{d_{A}} P_{\text {pre }}\left(x \mid a_{i} b, U_{\Phi}\right)=\frac{1}{d_{A}} \sum_{i=1}^{d_{A}} P_{\text {pre }}\left(x \mid a_{i}, \Phi\right)
\end{aligned}
$$

$$
P_{p o s t}\left(a \mid x b, U_{\Phi}\right)=\frac{P_{p r e}\left(x \mid a b, U_{\Phi}\right)}{\operatorname{tr}|x \chi x| \Phi\left[\square_{A}\right]}=P_{p o s t}(a \mid x, \Phi)
$$

Purification

$$
P_{p o s t}(x \mid a, \Phi)=P_{p o s t}\left(a \mid x b, U_{\Phi}\right)
$$

The inference asymmetry of quantum channels is understood as an asymmetry in the boundary data.

Two Maxims

There exists a unique deterministic effect.

The choice of an operation does not affect the probabilities of the outcome of an earlier operation.

Maxim 1

There exists a unique deterministic effect.

Mathematically correct: the trace is the only CPTP map to the trivial space.

Physically correct: there is fundamental unpredictability in QM.

But not a difference between past and future: there is fundamental unpostdictability in QM.

Maxim 1

When predicting, there exists a unique deterministic effect.

When postdicting, there exists a unique deterministic state.

Maxim 2

The choice of an operation does not affect the probabilities of the outcome of an earlier operation.

Mathematically correct: a consequence of conservation of probabilities.

Physically correct: experimentally corroborated.

But not a difference between past and future: difference between known and unknown

Maxim 2

An operation is a set $E=\left\{E_{x}\right\}$ of CP maps such that $\sum E_{x}$ is a CPTP map.
The probability of outcome x is given by $P(x \mid \rho, E)=\operatorname{tr} E_{x}[\rho]$.

If two operations $\left\{E_{x}\right\}$ and $\left\{F_{y}\right\}$ are composed in sequence:

$$
P(x y \mid \rho, F \circ E)=\operatorname{tr} F_{y}\left[E_{x}[\rho]\right] .
$$

Then

$$
P(x \mid \rho, F \circ E)=\sum \operatorname{tr} F_{y}\left[E_{x}[\rho]\right]=\operatorname{tr} E_{x}[\rho]=P(x \mid \rho, E)
$$

But clearly

$$
P_{p r e}(y \mid \rho, F \circ E)=\sum_{x} \operatorname{tr} F_{y}\left[E_{x}[\rho]\right]=\operatorname{tr} F_{y}[E[\rho]]
$$

$$
P(x \mid a, F \circ E)=P_{p r e}\left(x \mid a b c, U_{F} \circ U_{E}\right)
$$

Maxim 2

Why the asymmetry?

There are two asymmetric aspects:

- We are interested in prediction
- We consider time-asymmetric boundary conditions

Both can be understood in terms of thermodynamics:

- We remember the past, and not the future
- We make choices that affect the future, not the past

```
Ismael, How physics makes us free, Oxford University Press (2016)
Price, Time's arrow & Archimedes' point, Oxford University Press (1997)
Mlodinow and Brun, Relation between the psychological and thermodynamic arrows of time. Phys. Rev. E 89, (2014)
Rovelli, Agency in Physics. arXiv:2007.05300 (2020)
Rovelli,Memory and entropy. arXiv:2003.06687 (2020)
```

[Submitted on 12 Oct 2020] http://arxiv.org/abs/2010.05734

Quantum information and the arrow of time

Andrea Di Biagio, Pietro Donà, Carlo Rovelli

Plan

- Quantum Information and the arrow of time
- Towards time-symmetric causation
- Next steps

Take aways

Transition probabilities do not care about the direction of time.

There is a difference between known and unknown.

Unscrambling

Diagrammatic calculus is useful for systemic thinking, very legible, and suited for "distributed" processes.

But... there is a strange mix between the "physical" and "inferential" aspect of the theory.

Also, all probabilities are implicitly prediction probabilities.

Unscrambling

[Submitted on 7 Sep 2020 (v1), last revised 9 Sep 2020 (this version, v2)]

Unscrambling the omelette of causation and

 inference: The framework of causal-inferential theoriesDavid Schmid, John H. Selby, Robert W. Spekkens

CAUS $\xrightarrow{\mathbf{e}} \mathrm{C}-\mathrm{I} \xrightarrow[-\overline{\mathbf{p}}^{-}]{\mathbf{i}}$ INF

Unitary

Unitary

Prediction

Postdiction

Channel

Channel

Channel

Operation

Operation

Generators

Pure state preparation

Pure state measurement

Unitary transformation

Generators

Compositionality

Signalling

Signalling

Summary

Separate causation (necessary correlations) from inference.
Think about causation time-symmetrically.

More goals:
Use Gibbs-preserving maps to talk about thermodynamical aspects.

Use a more elaborate quantum/classical interface.

Plan

- Quantum Information and the arrow of time
- Towards time-symmetric causation
- Next steps

Bell's theorems still bite.

Quantum [Un]Speakables II pp 119-142 | Cite as
Causarum Investigatio and the Two Bell's Theorems of John Bell

Authors Authors and affiliations

Howard M. Wiseman \triangle, Eric G. Cavalcanti

Modify:

- The causal structure: Compositionality \neq Causality
- Inferential structure: Principle of Decorrelating Explanations

Time-symmetric reconstruction?

Toolbox for reconstructing quantum theory from rules on information acquisition

Philipp Andres Höhn,
Quantum 1, 38 (2017).
Quantum theory from questions
Philipp Andres Höhn and Christopher S. P. Wever
Phys. Rev. A 95, 012102 - Published 3 January 2017

Replace "questions and answers" with "interactions and values of observables".

QM allows to calculate the probability of an event, given other events.

Time-symmetric reconstruction?

Toolbox for reconstructing quantum theory from rules on information acquisition
Philipp Andres Höhn,
Quantum 1, 38 (2017).
Quantum theory from questions
Philipp Andres Höhn and Christopher S. P. Wever
Phys. Rev. A 95, 012102 - Published 3 January 2017

Replace "questions and answers" with "interactions and values of observables".

QM allows to calculate the probability of an event, given other events.

To be continued....

Thank you for listening!

Bell's theorems

Realist Version of Theorem 8

Operationalist Version of Theorem 8

