What can low energy quantum systems teach us about space and time?

Andrea Di Biagio

Advisors: Giovanni Montani and Carlo Rovelli Tutor: Leonardo Gualtieri

22 Feb 2022
PhD Viva ${ }_{1}$

LIGO+Virgo

M. and Carriio, G. and Carullo, G. and Carver, I. L. and Diaz, J. Casanueva and Casentinı, C. and Castaldi, G. and Caudill, S. and Cavagni\} a\}, M. and Cavalier, F. and Cavalieri, R. and Cea
Chakravarti, K. and Subrahmanya, S. Chalathadka and Champion, E. and Chan, C.-H. and Chan, C. and Chan, C. L. and Chan, K. and Chandra, K. and Chanial, P. and Chao, S. and Charl

$$
l_{\mathrm{P}}=\sqrt{\frac{G \hbar}{c^{3}}} \approx 10^{-35} \mathrm{~m} \quad E_{\mathrm{P}}=\sqrt{\frac{\hbar c^{5}}{G}} \approx 10^{16} \mathrm{TeV} \quad t_{\mathrm{P}}=\sqrt{\frac{G \hbar}{c^{5}}} \approx 10^{-44} \mathrm{~s}
$$

$$
l_{\mathrm{P}}=\sqrt{\frac{G \hbar}{c^{3}}} \approx 10^{-35} \mathrm{~m} \quad E_{\mathrm{P}}=\sqrt{\frac{\hbar c^{5}}{G}} \approx 10^{16} \mathrm{TeV} \quad t_{\mathrm{P}}=\sqrt{\frac{G \hbar}{c^{5}}} \approx 10^{-44} \mathrm{~s}
$$

Quantum Information and Foundations

QI: Information-processing capabilities afforded by quantum systems

No-cloning theorem

Quantum Teleportation

Superdense coding

Shor's algorithm

Quantum key distribution

Grover's algorithm
By Fawly - Own work
ommons.wikimedia.org/w/index.php?curid $=106362482$

Quantum Information and Foundations

QF: study of the counterintuitive properties of QM

Quantum Information and Foundations

QF: study of the counterintuitive properties of QM

Violation of causal inequalities

Quantum Information and Foundations

QF: study of the counterintuitive properties of QM

Violation of causal inequalities

1. Finiteness. If a system carries one bit of information, then each state is characterised by the outcome probabilities of a finite set of measurements.
2. Local tomography. The state of a composite system is fully characterised by the statistics of measurements performed on the subsystems.
3. Equivalence of subspaces. Systems that carry the same amount of information have isomorphic state spaces.
4. Symmetry. Any pure state can be reversibly transformed into any other pure state.
5. All measurements are allowed. Every mathematically well defined effect on a system carrying one bit corresponds to a possible measurement.

> Reconstructions
> of quantum theory from physical principles

Quantum Information and Foundations

QF: study of the counterintuitive properties of QM

Violation of causal inequalities

1. Finiteness. If a system carries one bit of information, then each state is characterised by the outcome probabilities of a finite set of measurements.
2. Local tomography. The state of a composite system is fully characterised by the statistics of measurements performed on the subsystems.
3. Equivalence of subspaces. Systems that carry the same amount of information have isomorphic state spaces.
4. Symmetry. Any pure state can be reversibly transformed into any other pure state.
5. All measurements are allowed. Every mathematically well defined effect on a system carrying one bit corresponds to a possible measurement.

Reconstructions

of quantum theory from physical principles

Interpretations of quantum theory

Quantum Information and Foundations

Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons

Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin 1) Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger
Phys. Rev. Lett. 115, 250401 - Published 16 December 2015

Violation of causal inequalities

1. Finiteness. If a system carries one bit of information, then each state is characterised by the outcome probabilities of a finite set of measurements.
2. Local tomography. The state of a composite system is fully characterised by the statistics of measurements performed on the subsystems.
3. Equivalence of subspaces. Systems that carry the same amount of information have isomorphic state spaces.
4. Symmetry. Any pure state can be reversibly transformed into any other pure state.
5. All measurements are allowed. Every mathematically well defined effect on a system carrying one bit corresponds to a possible measurement.

Reconstructions

of quantum theory from physical principles

Interpretations of quantum theory

QI and Spacetime

Quantum Reference Frames

Vanrietvelde, Höhn, Giacomini, Castro-Ruiz

QI and Spacetime

de la Hamette and Galley

Quantum Reference Frames

Indefinite causality

Oreshkov, Costa, Brukner

QI and Spacetime

de la Hamette and Galley

Quantum Reference Frames

Indefinite causality

Oreshkov, Costa, Brukne

Geometry from entanglement

Periwal et.al.

QI and Spacetime

de la Hamette and Galley

Quantum Reference Frames

Indefinite causality

Oreshkov, Costa, Brukner

Geometry from entanglement
Cao, Carrol, Michalakis

Vantrietvelde, Höhn, Giacomini, Castro-Ruiz

Low energy tests of quantum gravity!

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Part II: Conceptual investigations

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time

Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity
C. Marletto and V. Vedral

Phys. Rev. Lett. 119, 240402 - Published 13 December 2017

Spin Entanglement Witness for Quantum Gravity

Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn

Phys. Rev. Lett. 119, 240401 - Published 13 December 2017

GME

Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity
C. Marletto and V . Vedral

Phys. Rev. Lett. 119, 240402 - Published 13 December 2017

Spin Entanglement Witness for Quantum Gravity

Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn

Phys. Rev. Lett. 119, 240401 - Published 13 December 2017

GME

space

Preparation
 $(|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle)\left|g_{C C}\right\rangle$

Superposition

Free Fall

Recombination

Measurements

GME

space

Preparation
 $(|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle)\left|g_{C C}\right\rangle$

Superposition

Free Fall

Recombination

Measurements

GME

space

GME

space

Measurements

GME

space

Superposition

$|\uparrow \uparrow\rangle\left|g_{L L}\right\rangle+|\uparrow \downarrow\rangle\left|g_{L R}\right\rangle+|\downarrow \uparrow\rangle\left|g_{R L}\right\rangle+|\downarrow \downarrow\rangle\left|g_{R R}\right\rangle$
Free Fall

$$
e^{i \phi_{L L}}|\uparrow \uparrow\rangle\left|g_{L L}\right\rangle+e^{i \phi_{L R}}|\uparrow \downarrow\rangle\left|g_{L R}\right\rangle+e^{i \phi_{R L}}|\downarrow \uparrow\rangle\left|g_{R L}\right\rangle+e^{i \phi_{R R}}|\downarrow \downarrow\rangle\left|g_{R R}\right\rangle
$$

Recombination
$\left(e^{i \phi_{L L}}|\uparrow \uparrow\rangle+e^{i \phi_{L R}}|\uparrow \downarrow\rangle+e^{i \phi_{R L}}|\downarrow \uparrow\rangle+e^{i \phi_{R R}}|\downarrow \downarrow\rangle\right)\left|g_{C C}\right\rangle$

Measurements

GME

space

Measurements

$$
e^{i \phi_{L L}}|\uparrow \uparrow\rangle+e^{i \phi_{L R}}|\uparrow \downarrow\rangle+e^{i \phi_{R L}}|\downarrow \uparrow\rangle+e^{i \phi_{R R}}|\downarrow \downarrow\rangle
$$

GME

space

$$
\begin{aligned}
& e^{i \phi_{L R}|\uparrow \uparrow\rangle+e^{i \phi_{L L}}|\uparrow \downarrow\rangle+e^{i \phi_{R R}}|\downarrow \uparrow\rangle+e^{i \phi_{R L}}|\downarrow \downarrow\rangle} \\
& \phi_{L R}=\frac{G m^{2}}{d+2 l} \frac{t}{\hbar} \quad \phi_{R R}=\frac{G m^{2}}{d+l} \frac{t}{\hbar}=\phi_{L L}
\end{aligned}
$$

$$
\phi_{R L}=\frac{G m^{2}}{d} \frac{t}{\hbar}
$$

GME

space

$$
e^{i \phi_{L R}}|\uparrow \uparrow\rangle+e^{i \phi_{L L}}|\uparrow \downarrow\rangle+e^{i \phi_{R R}}|\downarrow \uparrow\rangle+e^{i \phi_{R L}}|\downarrow \downarrow\rangle
$$

$$
\begin{gathered}
\phi_{L R}=\frac{G m^{2}}{d+2 l} \frac{t}{\hbar} \quad \phi_{R R}=\frac{G m^{2}}{d+l} \frac{t}{\hbar}=\phi_{L L} \\
\phi_{R L}=\frac{G m^{2}}{d} \frac{t}{\hbar} \\
m \approx 10^{-14} \mathrm{~kg} \approx 10^{-6} m_{\mathrm{P}} \\
t \approx 1 \mathrm{~s} \quad d \approx 200 \mu \mathrm{~m} \quad l \approx 250 \mu \mathrm{~m} \\
\Longrightarrow \Delta \phi=\phi_{R L}+\phi_{L R}-2 \phi_{L L} \approx 1
\end{gathered}
$$

GME

space

$$
e^{i \phi_{L R}}|\uparrow \uparrow\rangle+e^{i \phi_{L L}}|\uparrow \downarrow\rangle+e^{i \phi_{R R}}|\downarrow \uparrow\rangle+e^{i \phi_{R L}}|\downarrow \downarrow\rangle
$$

$$
\begin{gathered}
\phi_{L R}=\frac{G m^{2}}{d+2 l} \frac{t}{\hbar} \quad \phi_{R R}=\frac{G m^{2}}{d+l} \frac{t}{\hbar}=\phi_{L L} \\
\phi_{R L}=\frac{G m^{2}}{d} \frac{t}{\hbar} \\
m \approx 10^{-14} \mathrm{~kg} \approx 10^{-6} m_{\mathrm{P}} \\
t \approx 1 \mathrm{~s} \quad d \approx 200 \mu \mathrm{~m} \quad l \approx 250 \mu \mathrm{~m} \\
\Longrightarrow \Delta \phi=\phi_{R L}+\phi_{L R}-2 \phi_{L L} \approx 1
\end{gathered}
$$

A prediction of linearised quantum gravity.
Not explainable in terms of semi-classical gravity

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time

Simulating GME

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{4} \otimes \mathbb{C}^{2}=\mathscr{H}_{\text {spin }_{A}} \otimes \mathscr{H}_{\text {geometry }} \otimes \mathscr{H}_{\text {spin }_{B}}
$$

Quantum Circuit

Optics Simulation

Two-photon scheme:

$$
\begin{array}{ll}
\text { spins } & \rightarrow \text { polarisation } \\
\text { geometry } & \rightarrow \text { path }
\end{array}
$$

Entanglement witness separable $\Longrightarrow W \geq 0$

$$
W^{\exp }=-0.514(2)
$$

CHSH inequality violation classical bound $S \leq 2$

$$
S^{\exp }=2.401(15)
$$

Optics Simulation

Optics Simulation

Optics Simulation

Four-photon scheme: Each qubit mapped to photon path

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time

LOCC

Local Operations and Classical Communication cannot

 create entanglement.
> "If A and B get entangled by interacting only with G, then G cannot be classical."

Formalised in QI and GPTs.

The experiment can rule out a class of theories.

Instantaneous interaction?

Extant derivations of the effect made use of the static approximation.

In that case, the effect can be explained by a direct interparticle interaction:

$$
\hat{H}_{\mathrm{int}}=-\frac{G m_{A} m_{B}}{\left|\hat{x}_{A}-\hat{x}_{B}\right|}
$$

We make use of the path-integral formulation of QM to compute the phases developed during the experiment.

Path Integral

$$
Z \propto \int \mathscr{D} x_{1} \mathscr{D} x_{2} \mathscr{D} F e^{i S\left[x_{1}, x_{2}, F\left[x_{1}, x_{2}\right] / \hbar\right.}
$$

$\xrightarrow{\text { space }}$

Path Integral

$$
Z \propto \int \mathscr{D} x_{1} \mathscr{D} x_{2} \mathscr{D} F e^{i S\left[x_{1}, x_{2}, F\left[x_{1}, x_{2}\right]\right] / \hbar}
$$

$\xrightarrow{\text { space }}$

Assume the paths of the particles is imposed by the interaction with an external field.

Path Integral

$$
Z \propto \int \mathscr{D} x_{1} \mathscr{D} x_{2} \mathscr{D} F e^{i S\left[x_{1}, x_{2}, F\left[x_{1}, x_{2}\right]\right] / \hbar}
$$

$\xrightarrow{\text { space }}$

Assume the paths of the particles is imposed by the interaction with an external field.

Stationary phase approximation.

Path Integral

$$
Z \propto \int \mathscr{D} x_{1} \mathscr{D} x_{2} \mathscr{D} F e^{i S\left[x_{1}, x_{2}, F\left[x_{1}, x_{2}\right]\right] / \hbar}
$$

$\xrightarrow{\text { space }}$

Assume the paths of the particles is imposed by the interaction with an external field.
Stationary phase approximation.

$$
\phi\left(s_{1}, s_{2}\right)=\frac{i S^{\mathrm{OS}}\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}, F\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\right]}{\hbar}
$$

$$
\phi\left(s_{1}, s_{2}\right)=\frac{i S^{\operatorname{os}}\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}, F\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\right]}{\hbar}
$$

$$
\phi\left(s_{1}, s_{2}\right)=\frac{i S^{\operatorname{os}\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}, F\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\right]}}{\hbar}
$$

- Phases are actions, have the same symmetries

$$
\phi\left(s_{1}, s_{2}\right)=\frac{i S^{\mathrm{os}}\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}, F\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\right]}{\hbar}
$$

- Phases are actions, have the same symmetries
- Gauge-invariant + Lorentz covariant (manifestly local)

$$
\phi\left(s_{1}, s_{2}\right)=\frac{i S^{\operatorname{os}\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}, F\left[x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\right]}}{\hbar}
$$

- Phases are actions, have the same symmetries
- Gauge-invariant + Lorentz covariant (manifestly local)
- Can be computed for arbitrary particle trajectories.

Gravitational phases

Exact formula

Gravitational phases

Exact formula

Gravitational phases

Exact formula

$$
S_{h}=\frac{G}{c^{4}} \int d t\left(\frac{m_{1} m_{2} V_{1 \mu \nu}(t) \bar{V}_{2}^{\mu \nu}\left(t_{21}\right)}{\left|d_{21}(t)\right|-d_{21}(t) \cdot v_{2}\left(t_{21}\right) / c}+1 \leftrightarrow 2\right)
$$

Small velocities

$$
S_{h}=\frac{G}{2} \int d t\left(\frac{m_{1} m_{2}}{\left|d_{21}(t)\right|}+\frac{m_{1} m_{2}}{\left|d_{12}(t)\right|}\right)
$$

Newtonian

$$
S_{F}=\int d t \frac{G m_{1} m_{2}}{|d(t)|}
$$

Observable effects

$$
\phi\left(s_{1}, s_{2}\right)=\frac{G}{2 \hbar} \int d t\left(\frac{m_{1} m_{2}}{\left|d_{21}(t)\right|}+\frac{m_{1} m_{2}}{\left|d_{12}(t)\right|}\right)
$$

If superposition happens in spacelike separated regions \Longrightarrow no entanglement!

Signal of the superposition needs time to propagate casually between masses.

Signal of the superposition needs time to propagate casually between masses.

Smaller deviations due to retarded interaction could be measured in electron interferometry-for the EM case!

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time

Setup

Setup

$$
\tau(r)=\sqrt{\left|g_{00}(r)\right|} t=\sqrt{1-\frac{2 G M}{r}} t \approx\left(1-\frac{G M}{r}\right) t
$$

Time dilation

Setup

Time dilation

$\tau(r)=\sqrt{\left|g_{00}(r)\right|} t=\sqrt{1-\frac{2 G M}{r}} t \approx\left(1-\frac{G M}{r}\right) t$

Phases due to proper time differences

$$
\phi=\frac{m c^{2}}{\hbar} \delta \tau=\frac{m}{m_{P}} \frac{\delta \tau}{t_{P}}
$$

$$
|\uparrow\rangle+e^{i \phi}|\downarrow\rangle
$$

Setup

Time dilation

$$
\tau(r)=\sqrt{\left|g_{00}(r)\right|} t=\sqrt{1-\frac{2 G M}{r}} t \approx\left(1-\frac{G M}{r}\right) t
$$

Phases due to proper time differences

$$
\begin{gathered}
\phi=\frac{m c^{2}}{\hbar} \delta \tau=\frac{m}{m_{P}} \frac{\delta \tau}{t_{P}} \\
\delta \tau=\frac{G M}{c^{2}} \frac{l}{d(d+l)} t
\end{gathered}
$$

Hypothesis

Hypothesis

$\phi=\frac{m}{m_{P}} \frac{\delta \tau}{t_{P}}$

$$
\delta \tau=n t_{P}, \quad n \in \mathbb{Z}
$$

$|\uparrow\rangle+e^{i \phi}|\downarrow\rangle$

Results

$|\uparrow\rangle+e^{i \phi}|\downarrow\rangle$

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Part II: Conceptual investigations

Plan

- Part II: Conceptual investigations
- The arrow of time in operational formulations of QT
- The relational interpretation of QM.

Plan

- Part II: Conceptual investigations
- The arrow of time in operational formulations of QT
- The relational interpretation of QM.

Tensions

Operational formulations of QM are strongly time-oriented.

Quantum states are associated with the past of a system.
Probabilities are about future results.

In tension with time-reversal symmetry of the rest of fundamental physics.

An issue for the reconstructions of quantum mechanics.

Resolution

Does quantum uncertainty imply time orientation?

Resolution

Does quantum uncertainty imply time orientation?
No.

Resolution

Does quantum uncertainty imply time orientation?
No.

Then why are certain formulations of quantum theory time-oriented?

Resolution

Does quantum uncertainty imply time orientation?
No.

Then why are certain formulations of quantum theory time-oriented?

They are designed to describe the interaction of macroscopic thermodynamical systems with quantum systems.

Resolution

Does quantum uncertainty imply time orientation?
No.

Then why are certain formulations of quantum theory time-oriented?

They are designed to describe the interaction of macroscopic thermodynamical systems with quantum systems.

We remember the past, but not the future.

Two games

Measurement

Preparation

Prediction

Postdiction

Inference Symmetry

A process Φ is inference symmetric if:

$$
P_{p r e}\left(x_{j} \mid a_{i}, \Phi\right)=P_{p o s t}\left(a_{i} \mid x_{j}, \Phi\right)
$$

for any choice of bases.

A kind of passive time-reversal symmetry.
Unitary evolution is inference symmetric.
Quantum channels are not inference symmetric.

Inference Symmetry

A process Φ is inference symmetric if:

$$
P_{\text {pre }}\left(x_{j} \mid a_{i}, \Phi\right)=P_{\text {post }}\left(a_{i} \mid x_{j}, \Phi\right)
$$

for any choice of bases.

A kind of passive time-reversal symmetry.
Unitary evolution is inference symmetric.
Quantum channels are not inference symmetric.

The inference asymmetry of quantum channels is understood as an asymmetry in the inference data.

Purification

$$
P_{p o s t}(a \mid x, \Phi)=P_{p o s t}\left(a \mid x b, U_{\Phi}\right)
$$

Why the asymmetry?

Time-asymmetry due to the users of QM .

QI is about correlations established between agents.

The agent is not explicitly modelled by the theory, but represented in the mathematical objects in the theory.

Plan

- Part II: Conceptual investigations
- The arrow of time in operational formulations of QT
- The relational interpretation of $\mathbf{Q M}$.

Map of Madness

	ψ-Ontic	ψ-Epistemic
Type-I (intrinsic realism)	Bohmian mechanics ${ }^{10,11}$ Many worlds ${ }^{12,13}$ Modal ${ }^{14,15}$ Bell's "beables" 16 Collapse theories*17,18	Einstein ${ }^{19}$ Ballentine ${ }^{20}$ Consistent histories ${ }^{21,22}$ Spekkens ${ }^{23}$

+ objective collapse models: Penrose-Diósi, GRW...

	About knowledge	About belief
Type-II (participatory realism)	Copenhagen ${ }^{24,25}$ Wheeler ${ }^{26,27}$ Relational ${ }^{28,29}$ Zeilinger ${ }^{3,30}$ No "interpretation" 31 Brukner ${ }^{32}$	QBism ${ }^{33-35}$

arxiv:1509.04711 (quant-ph)

Interpretations of quantum theory: A map of madness
Adán Cabello

Interpretations of quantum mechanics:

- Surprisingly different pictures of the world
- Designed to give the same predictions (except for objective collapse)
- But experimental metaphysics can put constraints on them.

No-Go theorems

Put constraints on various features of an interpretation.

Bell's 1967 theorem says QM is incompatible with:

- Relativistic causality

- Reichenbach's principle of decorrelating explanation $\quad P(a b \mid c)=P(a \mid c) P(b \mid c)$
- No Superdeterminism

No-Go theorems

Put constraints on various features of an interpretation.

Bell's 1967 theorem says QM is incompatible with:

- Relativistic causality

- Reichenbach's principle of decorrelating explanation $\quad P(a b \mid c)=P(a \mid c) P(b \mid c)$
- No Superdeterminism

Implicit assumption: Absoluteness of observed events

No-Go theorems

Recent theorem by Bong et.al. shows that QM is incompatible with

- Locality
- No Superdeterminism
- Absoluteness of observed events

Relational Quantum Mechanics is an interpretation of QM that embraces the relativity of facts.

In RQM, facts are relations established between two systems.
What is a fact relative to a given system might not be a fact relative to another.
"Wigner's facts are not necessarily his friend's facts"

Facts can happen relative to any physical system.

How does the classical world emerge from the world of relative facts?

To what extent the relativity of facts is analogous with special relativity?

How can objectivity be achieved when facts are not shared?

Plan

- Part I: Quantum gravity (and beyond) in the lab
- Gravitationally Mediated Entanglement (GME)
- Optical Simulation of a GME experiment
- Computing the phases from first principles
- An experiment to test the discreteness of time
- Part II: Conceptual investigations
- The arrow of time in operational formulations of QT
- The relational interpretation of QM.

Collaborators

