Why nobody understands Quantum Mechanics

Andrea Di Biagio

Yoga with Anysa Workshop

Erwin Schrödinger 1926

Albert Einstein 1926

If all the quantum jumping is here to stay, then I am sorry that I ever became involved in quantum mechanics.

Erwin Schrödinger 1926

Albert Einstein 1926

If all the quantum jumping is here to stay, then I am sorry that I ever became involved in quantum mechanics.

Erwin Schrödinger 1926

... an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the "old one."

Albert Einstein 1926

The Born-Einstein Letters (1971)

Niels Bohr 1952

Richard Feynman 1965

Those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Richard Feynman 1965

Niels Bohr

1952

Those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Niels Bohr 1952 I think I can safely say that nobody understands quantum mechanics.

Richard Feynman 1965

quantum theory?

Group → Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
							in							al Brow				1
		•		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
3-53-					Carlos Carlos	6.38	20		20	5 or 1	142-9	10-7		1000	12.			1

quantum theory?

Group → Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
							A.			N	FERE			. Bro				107
				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
				. · · .	2.875		a c	Page 1	200	5 01 1	14	18-5			97. • 17. •			100

 $\begin{aligned} \chi &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i \not\in D \not V + h.c. \\ &+ \chi_i y_{ij} \chi_{j} \not V + h.c. \\ &+ \left| p_{ij} \not P_{ij}^2 - V(\not P_{ij}) \right| \end{aligned}$

David Mermin 2012

David Mermin 2012

Quantum mechanics: Fixing the shifty split (2012)

Yet today, nearly 90 years after its formulation, disagreement about the meaning of the theory is stronger than

ever.

Časlav Brukner 2020

David Mermin 2012

Quantum mechanics: Fixing the shifty split (2012)

Yet today, nearly 90 years after its formulation, disagreement about the meaning of the theory is stronger than

ever.

Can this be believed? It's as if reality... didn't exist...

Časlav Brukner 2020

C. Rovelli, Helgoland (2020)

1	A <u>Fraction</u> of the Quantum Foundations Meetings since 1972
1972	The Development of the Physicist's Conception of Nature, Trieste, Italy
1973	Foundations of Quantum Mechanics and Ordered Linear Spaces, Marbourg, Germany
1974	Quantum Mechanics, a Half Century Later, Strasbourg, Germany
1975	Foundational Problems in the Special Sciences, London, Canada
1976	International Symposium on Fifty Years of the Schrödinger Equation, Vienna, Austria
1977	International School of Physics "Enrico Fermi", Course LXXII:
1070	Problems in the Foundations of Physics, Varenna, Italy
$1978 \\ 1979$	Stanford Seminar on the Foundations of Quantum Mechanics, Stanford, USA Interpretations and Foundations of Quantum Theory, Marburg, Germany
1979	Quantum Theory and the Structures of Time and Space, Tutzing, Germany
1981	NATO Advanced Study Institute on Quantum Optics, Experimental
1001	Gravitation, and Measurement Theory, Bad Windsheim, Germany
1982	The Wave-Particle Dualism: a Tribute to Louis de Broglie, Perugia, Italy
1983	Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan
1984	Fundamental Questions in Quantum Mechanics, Albany, New York
1985	Symposium on the Foundations of Modern Physics: 50 Years of
	the Einstein-Podolsky-Rosen Gedankenexperiment, Joensuu, Finland
1986	New Techniques and Ideas in Quantum Measurement Theory, New York, USA
1987	Symposium on the Foundations of Modern Physics 1987: The Copenhagen Interpretation 60 Years after the Como Lecture, Joensuu, Finland
1988	Bell's Theorem, Quantum Theory, and Conceptions of the Universe,
1500	Washington, DC, USA
1989	Sixty-two Years of Uncertainty: Historical, Philosophical and
	Physical Inquiries into the Foundations of Quantum Mechanics, Erice, Italy
1990	Symposium on the Foundations of Modern Physics 1990: Quantum Theory of
	Measurement and Related Philosophical Problems, Joensuu, Finland
1991	Bell's Theorem and the Foundations of Modern Physics, Cesena, Italy
1992	Symposia on the Foundations of Modern Physics 1992: The Copenhagen
1002	Interpretation and Wolfgang Pauli, Helsinki, Finland
1993	International Symposium on Fundamental Problems in Quantum Physics, Oviedo, Spain
1994	Fundamental Problems in Quantum Theory, Baltimore, USA
1995	The Dilemma of Einstein, Podolsky and Rosen, 60 Years Later, Haifa, Israel
1996	2nd International Symposium on Fundamental Problems in Quantum Physics, Oviedo, Spain
1997	Sixth UK Conference on Conceptual and Mathematical Foundations of Modern Physics, Hull, England
1998	Mysteries, Puzzles, and Paradoxes in Quantum Mechanics, Garda Lake, Italy
1999	2nd Workshop on Fundamental Problems in Quantum Theory, Baltimore, USA
2000	NATO Advanced Research Workshop on Decoherence and its Implications in Quantum Computation and Information Transfer, Mykonos, Greece
2001	Quantum Theory: Reconsideration of Foundations, Växjö, Sweden

	Interpretation \$	Year pub- ≎ lished	Author(s) \$	Determ- inistic?	Ontic wave- function?	Unique history? ^{\$}	Hidden variables? ^{\$}	Collapsing wave- ¢ functions?	Observer role?	Local dyna- ¢ mics?	Counter- factually ¢ definite?	Extant universal wave- function?
	Ensemble interpretation	1926	Max Born	Agnostic	No	Yes	Agnostic	No	No	No	No	No
	Copenhagen interpretation	1927	Niels Bohr, Werner Heisenberg	No	No ^[a]	Yes	No	Yes ^[b]	Causal	Yes	No	No
	de Broglie– Bohm theory	1927– 1952	Louis de Broglie, David Bohm	Yes	Yes ^[c]	Yes ^[d]	Yes	Phenomen- ological	No	No	Yes	Yes
	Quantum logic	1936	Garrett Birkhoff	Agnostic	Agnostic	Yes ^[e]	No	No	Interpre- tational ^[f]	Agnostic	No	No
-	Time- symmetric theories	1955	Satosi Watanabe	Yes	No	Yes	Yes	No	No	No ^[55]	No	Yes
	Many-worlds interpretation	1957	Hugh Everett	Yes	Yes	No	No	No	No	Yes	III-posed	Yes
· ·	Consciousness causes collapse	1961– 1993	John von Neumann, Eugene Wigner, Henry Stapp	No	Yes	Yes	No	Yes	Causal	No	No	Yes
	Stochastic interpretation	1966	Edward Nelson	No	No	Yes	Yes ^[g]	No	No	No	Yes ^[g]	No
	Many-minds interpretation	1970	H. Dieter Zeh	Yes	Yes	No	No	No	Interpre- tational ^[h]	Yes	III-posed	Yes
	Consistent histories	1984	Robert B. Griffiths	No	No	No	No	No ^[i]	No	Yes	No	Yes
	Transactional interpretation	1986	John G. Cramer	No	Yes	Yes	No	Yes ^[]]	No	No ^[k]	Yes	No
-	Objective collapse theories	1986– 1989	Ghirardi–Rimini–Weber, Penrose interpretation	No	Yes	Yes	No	Yes	No	No	No	No
	Relational interpretation	1994	Carlo Rovelli	No ^[56]	No	Agnostic ^[]]	No	Yes ^[m]	Intrinsic ^[n]	Yes ^[57]	No	No
= . .	QBism	2010	Christopher Fuchs, Ruediger Schack	No	No ^[0]	Agnostic ^[p]	No	Yes ^[q]	Intrinsic ^[r]	Yes	No	No

 2000 NATO Advanced Research Workshop on Decoherence and its Implications in Quantum Computation and Information Transfer, Mykonos, Greece
 2001 Quantum Theory: Reconsideration of Foundations, Växjö, Sweden

https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics#Comparisons

	In (D)				Ontic wave- function?	Unique history? [◆]	Hidden variables? ^{\$}	Collapsing wave- ¢ functions?	Observer role?	Local dyna- ¢ mics?	Counter- factually ¢ definite?	Extant universal wave- function?
	i i				No	Yes	Agnostic	No	No	No	No	No
	C				No ^[a]	Yes	No	Yes ^[b]	Causal	Yes	No	No
			ANTUM®		Yes ^[c]	Yes ^[d]	Yes	Phenomen- ological	No	No	Yes	Yes
			E CLEAN & SHINE		Agnostic	Yes ^[e]	No	No	Interpre- tational ^[f]	Agnostic	No	No
	sym SCRUE	35	DEGR	REASES	No	Yes	Yes	No	No	No ^[55]	No	Yes
	N				Yes	No	No	No	No	Yes	III-posed	Yes
•	C		SHINES		Yes	Yes	No	Yes	Causal	No	No	Yes
	Stochastic interpretation	1966	Edward Nelson	No	No	Yes	Yes ^[g]	No	No	No	Yes ^[g]	No
	Many-minds interpretation	1970	H. Dieter Zeh	Yes	Yes	No	No	No	Interpre- tational ^[h]	Yes	III-posed	Yes
	Consistent histories	1984	Robert B. Griffiths	No	No	No	No	No ^[i]	No	Yes	No	Yes
	Transactional interpretation	1986	John G. Cramer	No	Yes	Yes	No	Yes ^[]]	No	No ^[k]	Yes	No
.	Objective collapse theories	1986– 1989	Ghirardi–Rimini–Weber, Penrose interpretation	No	Yes	Yes	No	Yes	No	No	No	No
	Relational interpretation	1994	Carlo Rovelli	No ^[56]	No	Agnostic ^[I]	No	Yes ^[m]	Intrinsic ^[n]	Yes ^[57]	No	No
	QBism	2010	Christopher Fuchs, Ruediger Schack	No	No ^[o]	Agnostic ^[p]	No	Yes ^[q]	Intrinsic ^[r]	Yes	No	No

2000 INATO Advanced research Workshop on Deconstructe and its implications in Quantum Computation and Information Transfer, Mykonos, Greece 2001 Quantum Theory: Reconsideration of Foundations, Växjö, Sweden $https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics\#Comparisons$

A 72 73	٢				Ontic wave- function?	Unique history? ^{\$}	Hidden variables? ^{\$}	Collapsing wave- ¢ functions?	Observer role?	Local dyna- ¢ mics?	Counter- factually ¢ definite?	Extant universal wave- function?
74 75 : ii					No	Yes	Agnostic	No	No	No	No	No
6 6 7 6 ir					No ^[a]	Yes	No	Yes ^[b]	Causal	Yes	No	No
8 E				U	Yes ^[c]	Yes ^[d]	Yes	Phenomen- ological	No	No	Yes	Yes
9 : 0 Q	U		CLEAN & SHINE		Agnostic	Yes ^[e]	No	No	Interpre- tational ^[f]	Agnostic	No	No
2 3 2 sym	SCRUE	35	DEG	REASES	No	Yes	Yes	No	No	No ^[55]	No	Yes
1 N					Yes	No	No	No	No	Yes	III-posed	Yes
C			SHINES		Yes	Yes	No	Yes	Causal	No	No	Yes
	Stochastic nterpretation	1966	Edward Nelson	No	No	Yes	Yes ^[g]	No	No	No	Yes ^[g]	No
N	Many-minds								Interpre- tational ^[h]	Yes	III-posed	Yes
	sistent histori				S	ensit	ivo		No	Yes	No	Yes
	ransactional nterpretation		Wise	lom*		EFEN			No	No ^[k]	Yes	No
	ective collaps theories				TRIP	LE ACTION F orks in 3 ways	ORMULA		No	No	No	No
	Relational		Quantu			reduce sensitiv strengthen ena prevent ename	rity amel		Intrinsic ^[n]	Yes ^[57]	No	No
3	QBism		Websites Plur	Sride toothpaste					Intrinsic ^[r]	Yes	No	No
11	Advanced uantum Compu	tation and Inf	formation Transfer, My	konos, Greece			FRESH MINT		pretations_of_	_quantum_:	mechanics#Co	ompariso

C. Fuchs (2002) https://arxiv.org/abs/quant-ph/0205039

Quantum Theory: Reconsideration of Foundations, Växjö, Sweden

2001

in Quantum Computation and Information Transfer, Mykonos, Greece Quantum Theory: Reconsideration of Foundations, Växjö, Sweden 2001

Two missions of science

Two missions of science

Science offers two things:

Science offers two things:

1. Control

Science offers two things:

Control
 Understanding

Science offers two things:

Control
 Understanding

QM was a success on both counts, so what's all the fuss about?

Science offers two things:

Control
 Understanding

QM was a success on both counts, so what's all the fuss about?

We'll take a fast-track route to the core of the problem.

Science offers two things:

Control
 Understanding

QM was a success on both counts, so what's all the fuss about?

We'll take a fast-track route to the core of the problem.

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin & qubits
- Entanglement

QM is our theory of matter...

• Originally: the theory of the atom

- Originally: the theory of the atom
- Then the nucleus, then chemistry

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

... with uncomfortable features:

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

... with uncomfortable features:

• Predicts only probabilities of the result of interactions

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

... with uncomfortable features:

- Predicts only <u>probabilities</u> of the result of interactions
- A split: system / observer

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

... with uncomfortable features:

- Predicts only <u>probabilities</u> of the result of interactions
- A split: system / observer
- No intuitive picture of what happens <u>between</u> interactions

image on screen

image on screen

Ask different questions, get different answers.

Ask different questions, get different answers.

Questions that aren't asked, don't have answers.

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1119/1.16104

A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

• Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan

H. Ezawa

• Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1119/1.16104

A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

• Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan

H. Ezawa

• Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1119/1.16104

A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan

H. Ezawa

Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan

Single- and double-slit diffraction of neutrons

Anton Zeilinger, Roland Gähler, C. G. Shull, Wolfgang Treimer, and Walter Mampe Rev. Mod. Phys. **60**, 1067 – Published 1 October 1988

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1119/1.16104

A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan

H. Ezawa

Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan

Single- and double-slit diffraction of neutrons

Anton Zeilinger, Roland Gähler, C. G. Shull, Wolfgang Treimer, and Walter Mampe Rev. Mod. Phys. **60**, 1067 – Published 1 October 1988

Published: 14 October 1999

Wave-particle duality of C₆₀ molecules

Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw & Anton Zeilinger

Nature 401, 680–682(1999) Cite this article

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin & Qubits
- Entanglement

N

∎X

y

X

`y X

X

y y

X

X

X

X

Only one answer at a time!

ν

X

• Only 2 answers to any question

- Only 2 answers to any question
- Only 1 bit of information

- Only 2 answers to any question
- Only 1 bit of information

Quantum Computers

- Only 2 answers to any question
- Only 1 bit of information

Quantum Computers

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin & qubits
- Entanglement

1101010001001101001001...

1101010001001101001001001...

A B	Z	x
Z	=	R
X	R	=

6

Ζ

0 0

X

Q

A

6

Z

0

X

0

X

1

Q

Α

0

A

6

Z

0

Z

0

Х

0

X

1

6

Z

0

Z

0

X

0

X

1

Ζ

1

X

0

Q

Α

1	A B	z'	x'		
	z	=	=		
	x	=	¥		

1

z'

Q

Α

x

0

A

Q

A

6

Can answer correctly only 75% of the time!

Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger Phys. Rev. Lett. **49**, 91 – Published 12 July 1982

Experimental Realization of Einstein-Podolsky-Rosen-Bohm *Gedankenexperiment*: A New Violation of Bell's Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger Phys. Rev. Lett. **49**, 91 – Published 12 July 1982

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R.
N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss,
S. Wehner, T. H. Taminiau & R. Hanson ☑

Nature 526, 682–686(2015) Cite this article

Experimental Realization of Einstein-Podolsky-Rosen-Bohm *Gedankenexperiment*: A New Violation of Bell's Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger Phys. Rev. Lett. **49**, 91 – Published 12 July 1982

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R.
N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss,
S. Wehner, T. H. Taminiau & R. Hanson [™]

Nature 526, 682–686(2015) Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm *et al.* Phys. Rev. Lett. **115**, 250402 – Published 16 December 2015

Experimental Realization of Einstein-Podolsky-Rosen-Bohm *Gedankenexperiment*: A New Violation of Bell's Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger Phys. Rev. Lett. **49**, 91 – Published 12 July 1982

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R.
N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss,
S. Wehner, T. H. Taminiau & R. Hanson [™]

Nature 526, 682–686(2015) Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm *et al.* Phys. Rev. Lett. **115**, 250402 – Published 16 December 2015

Experimental Realization of Einstein-Podolsky-Rosen-Bohm *Gedankenexperiment*: A New Violation of Bell's Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger Phys. Rev. Lett. **49**, 91 – Published 12 July 1982

Nature answers correctly 82% of the time!

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R.
N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss,
S. Wehner, T. H. Taminiau & R. Hanson ⊠

Nature 526, 682–686(2015) Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm *et al.* Phys. Rev. Lett. **115**, 250402 – Published 16 December 2015

P(a,b) + (a,b) + (a,b) + (a,b) + (b,b) + (b,b)

Interpretations

Interpretations

Interpretation \$	Year pub- ≎ lished	Author(s) ÷	Determ- inistic?	Ontic wave- function?	Unique history? ^{\$}	Hidden variables? ^{\$}	Collapsing wave- ¢ functions?	Observer role?	Local dyna- ÷ mics?	Counter- factually ¢ definite?	Extant universal wave- function?
Ensemble interpretation	1926	Max Born	Agnostic	No	Yes	Agnostic	No	No	No	No	No
Copenhagen interpretation	1927	Niels Bohr, Werner Heisenberg	No	No ^[a]	Yes	No	Yes ^[b]	Causal	Yes	No	No
de Broglie– Bohm theory	1927– 1952	Louis de Broglie, David Bohm	Yes	Yes ^[c]	Yes ^[d]	Yes	Phenomen- ological	No	No	Yes	Yes
Quantum logic	1936	Garrett Birkhoff	Agnostic	Agnostic	Yes ^[e]	No	No	Interpre- tational ^[f]	Agnostic	No	No
Time- symmetric theories	1955	Satosi Watanabe	Yes	No	Yes	Yes	No	No	No ^[55]	No	Yes
Many-worlds interpretation	1957	Hugh Everett	Yes	Yes	No	No	No	No	Yes	III-posed	Yes
Consciousness causes collapse	1961– 1993	John von Neumann, Eugene Wigner, Henry Stapp	No	Yes	Yes	No	Yes	Causal	No	No	Yes
Stochastic interpretation	1966	Edward Nelson	No	No	Yes	Yes ^[g]	No	No	No	Yes ^[g]	No
Many-minds interpretation	1970	H. Dieter Zeh	Yes	Yes	No	No	No	Interpre- tational ^[h]	Yes	III-posed	Yes
Consistent histories	1984	Robert B. Griffiths	No	No	No	No	No ^[i]	No	Yes	No	Yes
Transactional interpretation	1986	John G. Cramer	No	Yes	Yes	No	Yes ^[]]	No	No ^[k]	Yes	No
Objective collapse theories	1986– 1989	Ghirardi–Rimini–Weber, Penrose interpretation	No	Yes	Yes	No	Yes	No	No	No	No
Relational interpretation	1994	Carlo Rovelli	No ^[56]	No	Agnostic ^[I]	No	Yes ^[m]	Intrinsic ^[n]	Yes ^[57]	No	No
QBism	2010	Christopher Fuchs, Ruediger Schack	No	No ^[o]	Agnostic ^[p]	No	Yes ^[q]	Intrinsic ^[r]	Yes	No	No

https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics#Comparisons

• Alice and Bob somehow rarely ask the "wrong" question

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds
- Reality is relational

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds
- Reality is relational
- Need a new concept of "explanation"

Hope you are confused

Read

Watch

AINHTE PHYSICS

Understanding Quantum Mechanics #6: It's not just a...

Sabine Hossenfelder

130K subscribers

The Character of Physical Law -Richard Feynman (1964)

Feynman 'Fun to Imagine'