Why nobody understands Quantum Mechanics

Andrea Di Biagio

Yoga with Anysa Workshop

Erwin Schrödinger 1926

Albert Einstein 1926

What's up with quantum theory?

What's up with quantum theory?

Niels Bohr 1952

What's up with quantum theory?

What's up with quantum theory?

Those who are not shocked

 when they first come across quantum theory cannot possibly

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

Technological Applications

What's up with quantum theory?

What's up with quantum theory?

What's up with quantum theory?

quantum theory?

quantum theory?

quantum theory?

57 La	58 Ce	59 Pr	60 Nd	61	62	63 Eu	G4	65 Tb	66	67 Ho	68 Er	$\begin{aligned} & 69 \\ & \mathrm{Tm} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

David Mermin 2012

What's up with quantum theory?

What's up with quantum theory?

What's up with quantum theory?

A Fraction of the Quantum Foundations Meetings since 1972

1972	The Development of the Physicist's Conception of Nature, Trieste, Italy
1973	Foundations of Quantum Mechanics and Ordered Linear Spaces, Marbourg, Germany
1974	Quantum Mechanics, a Half Century Later, Strasbourg, Germany
1975	Foundational Problems in the Special Sciences, London, Canada
1976	International Symposium on Fifty Years of the Schrödinger Equation, Vienna, Austria
1977	International School of Physics "Enrico Fermi", Course LXXII: Problems in the Foundations of Physics, Varenna, Italy
1978	Stanford Seminar on the Foundations of Quantum Mechanics, Stanford, USA
1979	Interpretations and Foundations of Quantum Theory, Marburg, Germany
1980	Quantum Theory and the Structures of Time and Space, Tutzing, Germany
1981	NATO Advanced Study Institute on Quantum Optics, Experimental Gravitation, and Measurement Theory, Bad Windsheim, Germany
1982	The Wave-Particle Dualism: a Tribute to Louis de Broglie, Perugia, Italy
1983	Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan
1984	Fundamental Questions in Quantum Mechanics, Albany, New York
1985	Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment, Joensuu, Finland
1986	New Techniques and Ideas in Quantum Measurement Theory, New York, USA
1987	Symposium on the Foundations of Modern Physics 1987: The Copenhagen Interpretation 60 Years after the Como Lecture, Joensuu, Finland
1988	Bell's Theorem, Quantum Theory, and Conceptions of the Universe, Washington, DC, USA
1989	Sixty-two Years of Uncertainty: Historical, Philosophical and Physical Inquiries into the Foundations of Quantum Mechanics, Erice, Italy
1990	Symposium on the Foundations of Modern Physics 1990: Quantum Theory of Measurement and Related Philosophical Problems, Joensuu, Finland
1991	Bell's Theorem and the Foundations of Modern Physics, Cesena, Italy
1992	Symposia on the Foundations of Modern Physics 1992: The Copenhagen Interpretation and Wolfgang Pauli, Helsinki, Finland
1993	International Symposium on Fundamental Problems in Quantum Physics, Oviedo, Spain
1994	Fundamental Problems in Quantum Theory, Baltimore, USA
1995	The Dilemma of Einstein, Podolsky and Rosen, 60 Years Later, Haifa, Israel
1996	2nd International Symposium on Fundamental Problems in Quantum Physics, Oviedo, Spain
1997	Sixth UK Conference on Conceptual and Mathematical Foundations of Modern Physics, Hull, England
1998	Mysteries, Puzzles, and Paradoxes in Quantum Mechanics, Garda Lake, Italy
1999	2nd Workshop on Fundamental Problems in Quantum Theory, Baltimore, USA
2000	NATO Advanced Research Workshop on Decoherence and its Implications in Quantum Computation and Information Transfer, Mykonos, Greece
2001	Quantum Theory: Reconsideration of Foundations, Växjö, Sweden

C. Fuchs (2002) https:/ /arxiv.org/abs/quant-ph/0205039

What's up with quantum theory?

C. Fuchs (2002) https:/ /arxiv.org/abs/quant-ph/0205039

What's up with quantum theory?

NATO Advanced Research Workshop on Decoherence and its Implications in Quantum Computation and Information Transfer, Mykonos, Greece
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics\#Comparisons Quantum Theory: Reconsideration of Foundations, Växjö, Sweden
C. Fuchs (2002) https://arxiv.org/abs/quant-ph/0205039

What's up with quantum theory?

NATO Advanced

in Quantum Computation and Information Transfer, Mykonos, Greece
 Quantum Theory: Reconsideration of Foundations, Växjö, Sweden
C. Fuchs (2002) https://arxiv.org/abs/quant-ph/0205039

What's up with quantum theory?

NATO Advanced

in Quantum Computation and Information Transfer, Mykonos, Greece Quantum Theory: Reconsideration of Foundations, Växjö, Sweden
C. Fuchs (2002) https://arxiv.org/abs/quant-ph/0205039

Two missions of science

Two missions of science

Science offers two things:

Two missions of science

Science offers two things:

1. Control

Science offers two things:

1. Control
2. Understanding

Two missions of science

Science offers two things:

1. Control
2. Understanding

QM was a success on both counts, so what's all the fuss about?

Science offers two things:

1. Control
2. Understanding

QM was a success on both counts, so what's all the fuss about?

We'll take a fast-track route to the core of the problem.

Science offers two things:

1. Control
2. Understanding

QM was a success on both counts, so what's all the fuss about?

We'll take a fast-track route to the core of the problem.

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin \& qubits
- Entanglement

What is Quantum Mechanics?

QM is our theory of matter...

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure
... with uncomfortable features:

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure
... with uncomfortable features:
- Predicts only probabilities of the result of interactions

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure
... with uncomfortable features:
- Predicts only probabilities of the result of interactions
- A split: system / observer

What is Quantum Mechanics?

QM is our theory of matter...

- Originally: the theory of the atom
- Then the nucleus, then chemistry
- Now, the properties of all matter
- Rigorous (and beautiful) mathematical structure ... with uncomfortable features:
- Predicts only probabilities of the result of interactions
- A split: system / observer
- No intuitive picture of what happens between interactions

Electron

Electron

Electron

Double Slit Experiment

Electron Gun

Double Slit Experiment

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

panel with slits

Double Slit Experiment

Electron Gun

Double Slit Experiment

Electron Gun

Double Slit Experiment

Double Slit Experiment

Double Slit Experiment

Double Slit Experiment

A

Double Slit Experiment

A

Ask different questions, get different answers.

Double Slit Experiment

A

Ask different questions, get different answers.

Questions that aren't asked, don't have answers.

Double Slit Experiment

Double Slit Experiment

Demonstration of single-electron buildup of an interference pattern

A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan
H. Ezawa

Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan

Double Slit Experiment

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1179/1.16104
A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan
Department of Physics, Cakushuin University, Mejiro, Tokyo 171, Japan

(20

Double Slit Experiment

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1199/1.16104
A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

- Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan

Department of Physics, Cakushuin University, Mejiro, Tokyo 171, Japan

Single- and double-slit diffraction of neutrons
Anton Zeilinger, Roland Gähler, C. G. Shull, Wolfgang Treimer, and Walter Mampe Rev. Mod. Phys. 60, 1067 - Published 1 October 1988

Double Slit Experiment

Demonstration of single-electron buildup of an interference pattern

American Journal of Physics 57, 117 (1989); https://doi.org/10.1179/1.16104
A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki

- Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan H. Ezawa
- Department of Physics, Cakushuin University, Mejiro, Tokyo 171, Japan

Single- and double-slit diffraction of neutrons
Anton Zeilinger, Roland Gähler, C. G. Shull, Wolfgang Treimer, and Walter Mampe Rev. Mod. Phys. 60, 1067 - Published 1 October 1988

Wave-particle duality of $\mathrm{C}_{\mathbf{6 0}}$ molecules

Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw \& Anton Zeilinger \bullet

Nature 401, 680-682(1999) | Cite this article

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin \& Qubits
- Entanglement

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Electron Spin

Q: How much are you pointing this way?

Electron Spin

Q: How much are you pointing this way?

Electron Spin

Q: How much are you pointing this way?

Electron Spin

Q: How much are you pointing this way?

Electron Spin

Q: How much are you pointing this way?

Electron Spin

Q: How much are you pointing this way?
Only two possible answers!

Electron Spin

Q: How much are you pointing this way?
Only two possible answers!

Electron Spin

Electron Spin

Electron Spin

Only one answer at a time!

Qubits

- Only 2 answers to any question

Qubits

- Only 2 answers to any question
- Only 1 bit of information

Qubits

- Only 2 answers to any question
- Only 1 bit of information

Quantum Computers

Qubits

- Only 2 answers to any question
- Only 1 bit of information

Quantum
 Computers

Plan

- What is quantum mechanics?
- The double slit experiment
- Electron Spin \& qubits
- Entanglement

Source

Alice
Source
Bob

Source

Bob

Bob

Entanglement

Alice
Source

Bob

Entanglement

1101010001001101001001001...
1101010001001101001001001...

Alice
Source

Bob

Entanglement

1101010001001101001001001...
1101010001001101001001001...

Alice
Source

Bob

Entanglement

1101010001001101001001001...
1101010001001101001001001...

Alice
Source

Bob

Entanglement

1101010001001101001001001...
1101010001001101001001001...

Alice
Source

Bob

Entanglement

$\mathbf{A}^{\mathbf{B}}$	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

1101010001001101001001001...
1101010001001101001001001...

Alice
Source

Bob

\mathbf{B}	\mathbf{z}	\mathbf{x}
\mathbf{z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{z}	\mathbf{x}
\mathbf{z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

Alice
Source
Bob

\mathbf{B}	\mathbf{z}	\mathbf{x}
\mathbf{z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

Entanglement

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

Entanglement

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

Entanglement

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

\mathbf{B}	\mathbf{Z}	\mathbf{x}
\mathbf{Z}	$=$	\mathbf{R}
\mathbf{x}	\mathbf{R}	$=$

Entanglement

\mathbf{A}^{B}	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{Z}		
\mathbf{x}		

Entanglement

\mathbf{A}^{B}	z^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	
x		

Entanglement

A^{B}	z^{\prime}	x^{\prime}
z	$=$	
x		\neq

Entanglement

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

Entanglement

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

Entanglement

Entanglement

Entanglement

Entanglement

Entanglement

Entanglement

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

Entanglement

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

x

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

$\mathbf{A}^{\mathbf{B}}$	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

Entanglement

\mathbf{B}	\mathbf{z}^{\prime}	\mathbf{x}^{\prime}
\mathbf{z}	$=$	$=$
\mathbf{x}	$=$	\neq

3

Can answer correctly only 75% of the time!

Entanglement

Entanglement

Experimental Realization of Einstein-Podolsky-Rosen-Bohm

 Gedankenexperiment: A New Violation of Bell's InequalitiesAlain Aspect, Philippe Grangier, and Gérard Roger
Phys. Rev. Lett. 49, 91 - Published 12 July 1982

Entanglement

Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau \& R. Hanson \square

Entanglement

Experimental Realization of Einstein-Podolsky-Rosen-Bohm

 Gedankenexperiment: A New Violation of Bell's Inequalities
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau \& R. Hanson \square

Nature 526, 682-686(2015) | Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm et al.
Phys. Rev. Lett. 115, 250402 - Published 16 December 2015

Entanglement

Experimental Realization of Einstein-Podolsky-Rosen-Bohm

 Gedankenexperiment: A New Violation of Bell's Inequalities
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau \& R. Hanson \square

Nature 526, 682-686(2015) | Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm et al.
Phys. Rev. Lett. 115, 250402 - Published 16 December 2015

Entanglement

Experimental Realization of Einstein-Podolsky-Rosen-Bohm

 Gedankenexperiment: A New Violation of Bell's Inequalities
Nature answers correctly 82% of the time!

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau \& R. Hanson \square

Nature 526, 682-686(2015) | Cite this article

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm et al.
Phys. Rev. Lett. 115, 250402 - Published 16 December 2015

Interpretations

Interpretation *	Year pub- lished	Author(s) \uparrow	Deterministic?	Ontic wavefunction?	Unique history?	Hidden variables?	Collapsing wavefunctions?	Observer role?	Local dynamics?	Counterfactually * definite?	Extant universal wavefunction?
Ensemble interpretation	1926	Max Born	Agnostic	No	Yes	Agnostic	No	No	No	No	No
Copenhagen interpretation	1927	Niels Bohr, Werner Heisenberg	No	$\mathrm{No}{ }^{[a]}$	Yes	No	Yes ${ }^{[b]}$	Causal	Yes	No	No
de BroglieBohm theory	$\begin{gathered} 1927- \\ 1952 \end{gathered}$	Louis de Broglie, David Bohm	Yes	Yes ${ }^{[c]}$	Yes ${ }^{[d]}$	Yes	Phenomenological	No	No	Yes	Yes
Quantum logic	1936	Garrett Birkhoff	Agnostic	Agnostic	Yes ${ }^{[\mathrm{e}]}$	No	No	Interpretational ${ }^{[f]}$	Agnostic	No	No
Timesymmetric theories	1955	Satosi Watanabe	Yes	No	Yes	Yes	No	No	$\mathrm{No}{ }^{[55]}$	No	Yes
Many-worlds interpretation	1957	Hugh Everett	Yes	Yes	No	No	No	No	Yes	III-posed	Yes
Consciousness causes collapse	$\begin{gathered} 1961- \\ 1993 \end{gathered}$	John von Neumann, Eugene Wigner, Henry Stapp	No	Yes	Yes	No	Yes	Causal	No	No	Yes
Stochastic interpretation	1966	Edward Nelson	No	No	Yes	Yes ${ }^{[9]}$	No	No	No	Yes ${ }^{[9]}$	No
Many-minds interpretation	1970	H. Dieter Zeh	Yes	Yes	No	No	No	Interpre- tational ${ }^{[h]}$	Yes	III-posed	Yes
Consistent histories	1984	Robert B. Griffiths	No	No	No	No	$\mathrm{No}{ }^{[1]}$	No	Yes	No	Yes
Transactional interpretation	1986	John G. Cramer	No	Yes	Yes	No	Yes ${ }^{[i]}$	No	$\mathrm{No}{ }^{[k]}$	Yes	No
Objective collapse theories	$\begin{gathered} 1986- \\ 1989 \end{gathered}$	Ghirardi-Rimini-Weber, Penrose interpretation	No	Yes	Yes	No	Yes	No	No	No	No
Relational interpretation	1994	Carlo Rovelli	$\mathrm{No}{ }^{[56]}$	No	Agnostic [l]	No	Yes ${ }^{[m]}$	Intrinsic ${ }^{\text {[}}$]	Yes ${ }^{[57]}$	No	No
QBism	2010	Christopher Fuchs, Ruediger Schack	No	$\mathrm{No}{ }^{[0]}$	Agnostic ${ }^{[p]}$	No	Yes ${ }^{[q]}$	Intrinsic ${ }^{[r]}$	Yes	No	No

Entanglement

What could be an explanation for entanglement?

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds
- Reality is relational

Entanglement

What could be an explanation for entanglement?

- Alice and Bob somehow rarely ask the "wrong" question
- Faster-than-light signalling (= signalling back in time)
- ???
- Parallel worlds
- Reality is relational
- Need a new concept of "explanation"

Thank You!

Hope you are confused

Read

THETTAO OF PHYSICS

FRITJOF CAPRA

THIRD EDITION

Watch

CLOSER TO TRUTH

Understanding Puantum Mechanics \#B

Understanding Quantum
Mechanics \#6: It's not just a...

Sabine Hossenfelder
130K subscribers

The Character of Physical Law Richard Feynman (1964)

Feynman 'Fun to Imagine'

