Relative Facts, Relational Quantum Mechanics

Andrea Di Biagio

Ateliers du LKB 2023-10-05

Relative Facts

Relative Facts

Friends

Relative Facts

Friends

Relative Facts

Friends

Relative Facts

Friends

Relative Facts

Friends

Relative Facts

Friends

Relative Facts
Wigner's Friend Scenario

Relative Facts

Wigner's Friend Scenario

is Emanuele in a superposition?

Relative Facts

Wigner's Friend Scenario

is Emanuele in a superposition?
what does it feel like to be in a superposition?

Relative Facts

Wigner's Friend Scenario

is Emanuele in a superposition?
what does it feel like to be in a superposition?
but whenever I look in the lab, I see him in a definite state

Relative Facts

Wigner's Friend Scenario

is Emanuele in a superposition? what does it feel like to be in a superposition?
but whenever I look in the lab, I see him in a definite state
it must just be a matter of lacking information, not a real superposition... right?

Relative Facts

Extended Wigner's Friend Scenario

Relative Facts

A no-go theorem

Observed frequencies

$$
f(a b \mid x y)
$$

Relative Facts

A no-go theorem

Observed frequencies
$f(a b \mid x y)$

$$
f(a b \mid x y)=\sum_{c, d} \tilde{f}(a b c d \mid x y)
$$

Absolute events

Relative Facts

A no-go theorem

Observed frequencies

$f(a b \mid x y)$

$$
\begin{array}{cc}
f(a b \mid x y)=\sum_{c, d} \tilde{f}(a b c d \mid x y) & \tilde{f}(c d \mid x y)=\tilde{f}(c d) \\
\begin{array}{c}
\text { Absolute } \\
\text { events }
\end{array} & \begin{array}{c}
\text { No super- } \\
\text { determinism }
\end{array}
\end{array}
$$

Relative Facts

A no-go theorem

Observed frequencies

$$
f(a b \mid x y)
$$

$$
\begin{array}{cc}
f(a b \mid x y)=\sum_{c, d} \tilde{f}(a b c d \mid x y) & \tilde{f}(c d \mid x y)=\tilde{f}(c d) \\
\begin{array}{c}
\text { Absolute } \\
\text { events }
\end{array} & \begin{array}{c}
\text { No super- } \\
\text { determinism }
\end{array}
\end{array}
$$

$\tilde{f}(a \mid c d x y)=\tilde{f}(a \mid c d x)$

Locality

Relative Facts

A no-go theorem

Observed frequencies

$$
f(a b \mid x y)
$$

$\tilde{f}(a \mid c d x y)=\tilde{f}(a \mid c d x)$

Relative Facts

A no-go theorem

Observed frequencies
 $f(a b \mid x y)$

Relative Facts

Comparison with Bell

Bell 1964

Relative Facts

Comparison with Bell

Bell 1964

Relative Facts

Comparison with Bell

Relative Facts

Comparison with Bell

Bell 1976

Relative Facts

Comparison with Bell

Bell 1976

Relative Facts

Comparison with Bell

Causal models

Relating Wigner's Friend scenarios to Nonclassical Causal

 Compatibility, Monogamy Relations, and Fine Tuning
Causal models

[Submitted on 22 Sep 2023]

Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

Causal models

Relating Wigner's Friend scenarios to Nonclassical Causal

 Compatibility, Monogamy Relations, and Fine Tuning

This DAG imposes the LF inequalities via the d-separation rule.

Causal models

Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcant

This DAG imposes the LF inequalities via the d-separation rule.

Essentially the only DAG compatible with the assumptions in the LF no-go theorem.

Causal models

Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

Yilè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcant

This DAG imposes the LF inequalities via the d-separation rule.

Essentially the only DAG compatible with the assumptions in the LF no-go theorem.

Every DAG that allows the violation of the LF inequalities is fine-tuned (even cyclic ones).

Causal models

Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
Yilè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti

This DAG imposes the LF inequalities via the d-separation rule.

Essentially the only DAG compatible with the assumptions in the LF no-go theorem.

Every DAG that allows the violation of the LF inequalities is fine-tuned (even cyclic ones).
\Longrightarrow (post-)GPT causal modelling cannot explain LF inequality violations.

Relative Facts

How to cope

Relative Facts

How to cope

No-interpretation interpretation not good anymore
Modify QM: Spontaneous collapse, fundamental observers

Relative Facts

How to cope

No-interpretation interpretation not good anymore
Modify QM: Spontaneous collapse, fundamental observers

Bohmian mechanics solves this and Bell the same way

Relative Facts

How to cope

No-interpretation interpretation not good anymore
Modify QM: Spontaneous collapse, fundamental observers

Bohmian mechanics solves this and Bell the same way
Superdeterministic theories too

Relative Facts

How to cope

No-interpretation interpretation not good anymore
Modify QM: Spontaneous collapse, fundamental observers

Bohmian mechanics solves this and Bell the same way
Superdeterministic theories too

Embrace relative facts!

Relative Facts

Experimental realisations?

Relative Facts

Experimental realisations?

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Experimental test of local observer independence
Massimiliano Proietti ${ }^{1}$, Alexander Pickston ${ }^{1}$, Francesco Graffitti ${ }^{1}$, Peter Barrow ${ }^{1}$, Dmytro Kundys ${ }^{1}$, Cyril Branciard ${ }^{\mathbf{2}}$, Martin Ringbauer ${ }^{1,3}$, Alessandro Fedrizzi ${ }^{1 *}$

A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong ${ }^{1,4}$, Aníbal Utreras-Alarcón ${ }^{1,4}$, Farzad Ghafari ${ }^{\circ}{ }^{1}$, Yeong-Cherng Liang ${ }^{2}$, Nora Tischler ${ }^{(1)}{ }^{1 \times}$, Eric G. Cavalcanti ${ }^{()^{3}{ }^{\boxed{1}}}$, Geoff J. Pryde ${ }^{()^{1}}$ and Howard M. Wiseman ${ }^{(1)}$

Relative Facts

Experimental realisations?

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Experimental test of local observer independence
Massimiliano Proietti ${ }^{1}$, Alexander Pickston ${ }^{1}$, Francesco Graffitti ${ }^{1}$, Peter Barrow ${ }^{1}$, Dmytro Kundys ${ }^{1}$, Cyril Branciard ${ }^{\mathbf{2}}$, Martin Ringbauer ${ }^{1,3}$, Alessandro Fedrizzi ${ }^{1 *}$

A strong no-go theorem on the Wigner's friend

 paradox

but... are photons friends?

Relative Facts

Experimental realisations?

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Experimental test of local observer independence
Massimiliano Proietti ${ }^{1}$, Alexander Pickston ${ }^{1}$, Francesco Graffitti ${ }^{1}$, Peter Barrow ${ }^{1}$, Dmytro Kundys ${ }^{1}$, Cyril Branciard ${ }^{\mathbf{2}}$, Martin Ringbauer ${ }^{1,3}$, Alessandro Fedrizzi ${ }^{1 *}$

but... are photons friends?

A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong ${ }^{1,4}$, Aníbal Utreras-Alarcón ${ }^{1,4}$, Farzad Ghafari ${ }^{\text {© }}$, Yeong-Cherng Liang ${ }^{2}$, Nora Tischler ${ }^{(1)}{ }^{1 \times}$, Eric G. Cavalcanti ${ }^{()^{3}{ }^{\boxed{1}}}$, Geoff J. Pryde ${ }^{()^{1}}$ and Howard M. Wiseman ${ }^{(1)}$

yes for RQM!
what is a better friend?

Other theorems

arXiv:2205.12223 (quant-ph)
[Submitted on 24 May 2022 (v1), last revised 15 Jul 2022 (this version, v2)]
A possibilistic no-go theorem on the Wigner's friend paradox

Marwan Haddara, Eric G. Cavalcanti
arXiv:1811.02442 (quant-ph)
[Submitted on 6 Nov 2018 (v1), last revised 7 Nov 2018 (this version, v2)]
When Greenberger, Horne and Zeilinger meet Wigner's Friend

Implications of Local Friendliness Violation for Quantum Causality by (8) Eric G. Cavalcanti $1,{ }^{*} \boxminus$ © and (8) Howard M. Wiseman $2 \boxminus$ ©
Entropy 2021, 23(8), 925; https://doi.org/10.3390/e23080925
Received: 4 June 2021 / Revised: 1 July 2021 / Accepted: 2 July 2021 / Published: 21 July 2021
A "thoughtful" Local Friendliness no-go theorem: a prospective experiment with new assumptions to suit

Howard M. Wiseman ${ }^{1,2}$, Eric G. Cavalcanti ${ }^{3}$, and Eleanor G. Rieffel ${ }^{4}$

```
Published: 2023-09-14, volume 7, page 1112
Eprint: arxiv:2209.08491v4
Doi: https://doi.org/10.22331/q-2023-09-14-1112
Citation: Quantum 7, 1112 (2023).
```

arXiv:2308.16220 (quant-ph)

[Submitted on 30 Aug 2023]
 A review and analysis of six extended Wigner's friend arguments

David Schmid, Yilè Yīng, Matthew Leifer

Relational Quantum Mechanics

Relational Quantum Mechanics

Motivations

Relational Quantum Mechanics

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct

Relational Quantum Mechanics

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents
- No inaccessible realities: no hidden variables, or parallel worlds

Motivations

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents
- No inaccessible realities: no hidden variables, or parallel worlds
- Relativity and time-symmetry: wavefunction only used for inference

Relational Quantum Mechanics

Origins

Relational quantum mechanics
Carlo Rovelli
International Journal of Theoretical Physics 35, 1637-1678 (1996)

Relational Quantum Mechanics

Origins

Relational quantum mechanics
Carlo Rovelli
International Journal of Theoretical Physics 35, 1637-1678 (1996)
deriving the formalism from a set of simple physical postulates

Relational Quantum Mechanics

Origins

Relational quantum mechanics

Carlo Rovelli
International Journal of Theoretical Physics 35, 1637-1678 (1996)
deriving the formalism from a set of simple physical postulates
quantum mechanics in terms of information theory

Origins

Relational quantum mechanics

Carlo Rovelli
International Journal of Theoretical Physics 35, 1637-1678 (1996)
deriving the formalism from a set of simple physical postulates
quantum mechanics in terms of information theory
incorrect notion: "observer-independent values of physical quantities."

Relational Quantum Mechanics

New formulations

CHAPTER

43 The Relational Interpretation
Carlo Rovelli
https://doi.org/10.1093/oxfordhb/9780198844495.013.0044
Published: 19 May 2022

Foundations of Physics (2022) 52:62
https://doi.org/10.1007/s10701-022-00579-5

Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner

Andrea Di Biagio ${ }^{1}{ }^{(\odot}$. Carlo Rovellii ${ }^{2,3,4}$
arXiv:2203.13342 (quant-ph)
Submitted on 24 Mar 2022 (v1), last revised 14 Apr 2022 (this version, v2)]
Information is Physical: Cross-Perspective Links in Relational Quantum Mechanics

Emily Adlam, Carlo Rovelli

Relational Quantum Mechanics

Relative facts

Relational Quantum Mechanics

Relative facts

When two systems interact, variables take values, aka facts

Relative facts

When two systems interact, variables take values, aka facts
Relative values, aka relative facts.

Relative facts

When two systems interact, variables take values, aka facts
Relative values, aka relative facts.
The quantum state is assigned based on these facts, and used to compute probabilities of other facts.

Relative facts

When two systems interact, variables take values, aka facts
Relative values, aka relative facts.
The quantum state is assigned based on these facts, and used to compute probabilities of other facts.

A third system infers an entangled state, but no facts relative to them.

Relative facts

When two systems interact, variables take values, aka facts
Relative values, aka relative facts.
The quantum state is assigned based on these facts, and used to compute probabilities of other facts.

A third system infers an entangled state, but no facts relative to them.

Relational Quantum Mechanics

Key Claims

Relational Quantum Mechanics

Key Claims

1. Facts can happen relative to any system

Relational Quantum Mechanics

Key Claims

1. Facts can happen relative to any system
2. No hidden variables

Relational Quantum Mechanics

Key Claims

1. Facts can happen relative to any system
2. No hidden variables
3. Relations are intrinsic

Relational Quantum Mechanics

Key Claims

1. Facts can happen relative to any system
2. No hidden variables
3. Relations are intrinsic
4. Comparisons can only be made relative to a given system

Key Claims

1. Facts can happen relative to any system
2. No hidden variables
3. Relations are intrinsic
4. Comparisons can only be made relative to a given system
5. Interactions between two systems results in correlations relative to a third system

Key Claims

1. Facts can happen relative to any system
2. No hidden variables
3. Relations are intrinsic
4. Comparisons can only be made relative to a given system
5. Interactions between two systems results in correlations relative to a third system
6. "Shared" facts

Relational Quantum Mechanics

Relative facts

$$
P(a)=\sum_{i} P\left(a \mid b_{i}\right) P\left(b_{i}\right)
$$

Relational Quantum Mechanics

Relative facts

$$
P\left(a^{(W)}\right)=\sum_{i} P\left(a \mid b_{i}\right) P\left(b_{i}^{(W)}\right)
$$

Relational Quantum Mechanics

Relative facts

$$
P\left(a^{(W)}\right)=\sum_{i} P\left(a \mid b_{i}\right) P\left(b_{i}^{(W)}\right)
$$

$$
P\left(a \mid b_{i}\right)=\left|\left\langle a \mid b_{i}\right\rangle\right|^{2}
$$

Relational Quantum Mechanics

Relative facts

$$
P\left(a^{(W)}\right) \neq \sum P\left(a \mid b_{i}\right) P\left(b_{i}^{(F)}\right)
$$

Interference effects are a sign of the relativity of facts

Relational Quantum Mechanics

Stable facts

$$
|\psi\rangle=\sum_{i} \alpha_{i}|i\rangle_{S} \otimes\left|F_{i}\right\rangle_{F} \otimes\left|\psi_{i}\right\rangle_{E}
$$

Relational Quantum Mechanics

Stable facts

$$
\begin{aligned}
& |\psi\rangle=\sum_{i} \alpha_{i}|i\rangle_{S} \otimes\left|F_{i}\right\rangle_{F} \otimes\left|\psi_{i}\right\rangle_{E} \\
& \longrightarrow \rho=\left.\operatorname{tr}_{E}|\psi\rangle \psi\left|=\sum_{i}\right| \alpha_{i}\right|^{2}\left|i F_{i}\right\rangle i F_{i} \mid+O(\epsilon) \\
& \epsilon=\max _{i \neq} \mid\left.\left\langle\psi_{i}\right|\left\langle\psi_{j}\right\rangle\right|^{2}
\end{aligned}
$$

Relational Quantum Mechanics

Stable facts

$$
\rho \approx \sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i} X i F_{i}\right|
$$

Relational Quantum Mechanics

Stable facts

$$
\rho \approx \sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i} X i F_{i}\right|
$$

$$
P\left(a^{(W)}\right) \approx \sum_{i} P\left(a \mid b_{i}\right) P\left(b_{i}^{(F)}\right)
$$

Relational Quantum Mechanics

Sharing facts?

Do we see the same facts?

$$
\sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i}\right\rangle\left\langle F_{i}\right|
$$

Relational Quantum Mechanics

Sharing facts?

Do we see the same facts?
If Friend measures a system S and Wigner measures the system on the same basis, do they see the same outcome?

$$
\sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i}\right\rangle\left\langle F_{i}\right|
$$

Sharing facts?

Do we see the same facts?
If Friend measures a system S and Wigner measures the system on the same basis, do they see the same outcome?

QM predicts that the outcome of Wigner's measurement is compatible with what he sees that Friend saw.

$$
\sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i}\right\rangle\left\langle i F_{i}\right| \longrightarrow|2\rangle\left|F_{2}\right\rangle
$$

Relational Quantum Mechanics

Sharing facts?

$$
\left.\sum_{i}\left|\alpha_{i}\right|^{2}\left|i F_{i}\right\rangle i F_{i}|\longrightarrow| i_{2}\right\rangle\left|F_{2}\right\rangle
$$

Foundations of Physics (2022) 52:62
https://doi.org/10.1007/s10701-022-00579-5

Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner

Andrea Di Biagio ${ }^{1}$ - . Carlo Rovelli ${ }^{2,3,4}$
nothing more to say:
describe physics from one perspective only
arXiv:2203.13342 (quant-ph)
[Submitted on 24 Mar 2022 (v1), last revised 14 Apr 2022 (this version, v2)]
Information is Physical: Cross-Perspective Links in Relational Quantum Mechanics

Emily Adlam, Carlo Rovelli
cross-perspective link:
measuring "reveals" the value of the relative fact

Emergence of objectivity

Decoherence makes it look as if we share facts.
Decoherence is never complete.
Decoherence is relational: it depends on the couplings.
Systems can be in different stability classes.

Relational Quantum Mechanics

Facts, not states

Relational Quantum Mechanics

Facts, not states

$$
\left|\uparrow_{z}\right\rangle_{S}\left|\psi_{0}\right\rangle_{F}+\left|\downarrow_{z}\right\rangle_{S}\left|\psi_{1}\right\rangle_{F}
$$

Relational Quantum Mechanics

Facts, not states

$$
\left|\uparrow_{z}\right\rangle_{S}\left|\psi_{0}\right\rangle_{F}+\left|\downarrow_{z}\right\rangle_{S}\left|\psi_{1}\right\rangle_{F}
$$

Does this imply that the z spin is a fact for friend?

Relational Quantum Mechanics

Facts, not states

$$
\left|\uparrow_{z}\right\rangle_{S}\left|\psi_{0}\right\rangle_{F}+\left|\downarrow_{z}\right\rangle_{S}\left|\psi_{1}\right\rangle_{F}
$$

Does this imply that the z spin is a fact for friend?

Not necessarily.

Relational Quantum Mechanics

Facts, not states

$$
\left|\uparrow_{z}\right\rangle_{S}\left|\psi_{0}\right\rangle_{F}+\left|\downarrow_{z}\right\rangle_{S}\left|\psi_{1}\right\rangle_{F}=\left|\uparrow_{x}\right\rangle_{S}\left|\tilde{\psi}_{0}\right\rangle_{F}+\left|\downarrow_{x}\right\rangle_{S}\left|\tilde{\psi}_{1}\right\rangle_{F}
$$

Does this imply that the z spin is a fact for friend?
Not necessarily.

Relational Quantum Mechanics

Facts, not states

$$
\left|\uparrow_{z}\right\rangle_{S}\left|\psi_{0}\right\rangle_{F}+\left|\downarrow_{z}\right\rangle_{S}\left|\psi_{1}\right\rangle_{F}=\left|\uparrow_{x}\right\rangle_{S}\left|\tilde{\psi}_{0}\right\rangle_{F}+\left|\downarrow_{x}\right\rangle_{S}\left|\tilde{\psi}_{1}\right\rangle_{F}
$$

Does this imply that the z spin is a fact for friend?
Not necessarily.
When F is macroscopic, we know what variable has been measured, but when F is microscopic, how do we decide?

Relational Quantum Mechanics

Consistency of relative facts

 Incompatible with Quantum Mechanics
Relational Quantum Mechanics

Consistency of relative facts

 ncompatible with Quantum MechanicsThree qubits are prepared in the GHZ state.

Consistency of relative facts

Three qubits are prepared in the GHZ state.

Alice measures them on the z basis. Get outcomes $\mathscr{A}_{i^{*}}$.

\mathscr{A}_{i}

consistency ofreletimetecte

Three qubits are prepared in the GHZ state.

Alice measures them on the z basis. Get outcomes \mathscr{A}_{i}.

Bob measures the spins and Alice on the y basis. Gets outcomes \mathscr{B}_{i}.

Relational Quantum Mechanics

Relative Facts of Relational Quantum Mechanics are

Consistency of relative facts

 Incompatible with Quantum Mechanics

$$
\begin{gathered}
\mathscr{B}_{1} \mathscr{B}_{2} \mathscr{B}_{3}=+1 \\
\mathscr{A}_{1} \mathscr{A}_{2} \mathscr{B}_{3}=-1 \\
\mathscr{A}_{1} \mathscr{B}_{2} \mathscr{A}_{3}=-1 \\
\mathscr{B}_{1} \mathscr{A}_{2} \mathscr{A}_{3}=-1 \\
\downarrow \\
\left(\mathscr{A}_{1}\right)^{2}\left(\mathscr{A}_{2}\right)^{2}\left(\mathscr{A}_{3}\right)^{2}\left(\mathscr{B}_{1}\right)^{2}\left(\mathscr{B}_{2}\right)^{2}\left(\mathscr{B}_{3}\right)^{2}=-1
\end{gathered}
$$

Relational Quantum Mechanics

The consistency of relative facts

No observer has access to all these facts.

$$
\begin{aligned}
& \mathscr{B}_{1} \mathscr{B}_{2} \mathscr{B}_{3}=+1 \\
& \mathscr{A}_{1} \mathscr{A}_{2} \mathscr{B}_{3}=-1 \\
& \mathscr{A}_{1} \mathscr{B}_{2} \mathscr{A}_{3}=-1 \\
& \mathscr{B}_{1} \mathscr{A}_{2} \mathscr{A}_{3}=-1
\end{aligned}
$$

Predictions about single observers are consistent.
But the "list of all relative facts" is odd.

Summary

Summary

- No-Go theorems for Wigner's Friend scenario pose a challenge stronger than Bell's theorems.

Summary

- No-Go theorems for Wigner's Friend scenario pose a challenge stronger than Bell's theorems.
- Experimentally underway.

Summary

- No-Go theorems for Wigner's Friend scenario pose a challenge stronger than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.

Summary

- No-Go theorems for Wigner's Friend scenario pose a challenge stronger than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.
- Decoherence hides the relationality.

Summary

- No-Go theorems for Wigner's Friend scenario pose a challenge stronger than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.
- Decoherence hides the relationality.
- Story not completely worked out.

Some open questions

Some open questions

1. How to really make sense of relative facts?

Some open questions

1. How to really make sense of relative facts?
2. Can we live without merging perspectives?

Some open questions

1. How to really make sense of relative facts?
2. Can we live without merging perspectives?
3. Revise the resolution of Bell's theorems.

Some open questions

1. How to really make sense of relative facts?
2. Can we live without merging perspectives?
3. Revise the resolution of Bell's theorems.
4. GPTs, W-matrix, QRFs do not deal with relative facts.

Some open questions

1. How to really make sense of relative facts?
2. Can we live without merging perspectives?
3. Revise the resolution of Bell's theorems.
4. GPTs, W-matrix, QRFs do not deal with relative facts.
5. LF no-go theorem is a big challenge for causal thinking.

Some open questions

1. How to really make sense of relative facts?
2. Can we live without merging perspectives?
3. Revise the resolution of Bell's theorems.
4. GPTs, W-matrix, QRFs do not deal with relative facts.
5. LF no-go theorem is a big challenge for causal thinking.
6. What is a credible "Friend" for EWFS experiments?
thank you!
