# Relative Facts, Relational Quantum Mechanics

Andrea Di Biagio Ateliers du LKB 2023-10-05





















# Wigner's Friend Scenario





# Wigner's Friend Scenario

is Emanuele in a superposition?





# Wigner's Friend Scenario

is Emanuele in a superposition?

what does it feel like to be in a superposition?





# Wigner's Friend Scenario

is Emanuele in a superposition?

what does it feel like to be in a superposition?

but whenever I look in the lab, I see him in a definite state





# Wigner's Friend Scenario

is Emanuele in a superposition?

what does it feel like to be in a superposition?

but whenever I look in the lab, I see him in a definite state

it *must* just be a matter of lacking information, not a real superposition... *right*?





## **Extended Wigner's Friend Scenario**



img: Giulia Rubino Č. Brukner DOI: <u>10/gdq8td</u> arXiv: <u>1804.00749</u> Č. Brukner DOI:<u>10/gp9dn7</u>



## A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$



Article Published: 17 August 2020

#### A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora <u>Tischler</u> ⊠, <u>Eric G. Cavalcanti</u> ⊠, <u>Geoff J. Pryde</u> & <u>Howard M. Wiseman</u>



## A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$

$$f(ab | xy) = \sum_{c,d} \tilde{f}(abcd | xy)$$

Absolute events



Article Published: 17 August 2020

#### A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora <u>Tischler</u> ⊠, <u>Eric G. Cavalcanti</u> ⊠, <u>Geoff J. Pryde</u> & <u>Howard M. Wiseman</u>



## A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$

$$f(ab \,|\, xy) = \sum_{c,d} \tilde{f}(abcd \,|\, xy)$$

Absolute events



### $\tilde{f}(cd | xy) = \tilde{f}(cd)$

### No superdeterminism

Article Published: 17 August 2020

#### A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora <u>Tischler</u> ⊠, <u>Eric G. Cavalcanti</u> ⊠, <u>Geoff J. Pryde</u> & <u>Howard M. Wiseman</u>



## A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$

$$f(ab \,|\, xy) = \sum_{c,d} \tilde{f}(abcd \,|\, xy)$$

Absolute events



### $\tilde{f}(cd | xy) = \tilde{f}(cd)$

No superdeterminism

### $\tilde{f}(a \mid cdxy) = \tilde{f}(a \mid cdx)$



Article Published: 17 August 2020

#### A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora <u>Tischler</u> ⊠, <u>Eric G. Cavalcanti</u> ⊠, <u>Geoff J. Pryde</u> & <u>Howard M. Wiseman</u>



### A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$





$$xy) = \tilde{f}(cd)$$

No superdeterminism

$$\tilde{f}(a \mid cdxy) = \tilde{f}(a \mid cdx)$$

Locality

Article Published: 17 August 2020

#### A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang, Nora Tischler 🗁, Eric G. Cavalcanti 🗠, Geoff J. Pryde & Howard M. Wiseman



## A no-go theorem

### **Observed frequencies** $f(ab \mid xy)$





$$xy) = \tilde{f}(cd)$$

 $\tilde{f}(a \mid cdxy) = \tilde{f}(a \mid cdx)$ 

# **Comparison with Bell**

No superdeterminism

### **Bell 1964**





# **Comparison with Bell**

No superdeterminism

### **Bell 1964**





# **Comparison with Bell**

No superdeterminism





# **Comparison with Bell**

### No superdeterminism

### **Bell 1976**





# **Comparison with Bell**

### No superdeterminism

### **Bell 1976**





# **Comparison with Bell**

### No superdeterminism





# **Comparison with Bell**

### No superdeterminism





# **Comparison with Bell**

### No superdeterminism

### LF inequalities





## **Comparison with Bell**





## **Comparison with Bell**





[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti

# **Causal models**

### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**



**Causal models** 

[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti



### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**



[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti

### This DAG imposes the LF inequalities via the *d*-separation rule.

# **Causal models**



### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**





[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti



Causal models

### This DAG imposes the LF inequalities via the *d*-separation rule.

the LF no-go theorem.

### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**

## **Essentially the only DAG compatible with the assumptions in**







[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti



**Causal models** 

### This DAG imposes the LF inequalities via the *d*-separation rule.

the LF no-go theorem.

*Every* DAG that allows the violation of the LF inequalities is fine-tuned (even cyclic ones).

### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**

## **Essentially the only DAG compatible with the assumptions in**







[Submitted on 22 Sep 2023]

Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti



**Causal models** 

### This DAG imposes the LF inequalities via the *d*-separation rule.

the LF no-go theorem.

*Every* DAG that allows the violation of the LF inequalities is *fine-tuned* (even cyclic ones).

### ⇒ (post-)GPT causal modelling cannot explain LF inequality violations.

### **Relating Wigner's Friend scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning**

## **Essentially the only DAG compatible with the assumptions in**







### How to cope





#### No-interpretation interpretation not good anymore



### How to cope





#### No-interpretation interpretation not good anymore

Modify QM: Spontaneous collapse, fundamental observers



### How to cope





No-interpretation interpretation not good anymore Modify QM: Spontaneous collapse, fundamental observers **Bohmian mechanics solves this and Bell the same way** 



### How to cope





No-interpretation interpretation not good anymore Modify QM: Spontaneous collapse, fundamental observers Bohmian mechanics solves this and Bell the same way **Superdeterministic theories too** 



### How to cope





No-interpretation interpretation not good anymore Modify QM: Spontaneous collapse, fundamental observers **Bohmian mechanics solves this and Bell the same way Superdeterministic theories too** 

**Embrace relative facts!** 



## **Experimental realisations?**

## **Experimental realisations?**

#### SCIENCE ADVANCES | RESEARCH ARTICLE

#### PHYSICS

#### Experimental test of local observer independence

Massimiliano Proietti<sup>1</sup>, Alexander Pickston<sup>1</sup>, Francesco Graffitti<sup>1</sup>, Peter Barrow<sup>1</sup>, Dmytro Kundys<sup>1</sup>, Cyril Branciard<sup>2</sup>, Martin Ringbauer<sup>1,3</sup>, Alessandro Fedrizzi<sup>1</sup>\*







Kok-Wei Bong<sup>1,4</sup>, Aníbal Utreras-Alarcón<sup>1,4</sup>, Farzad Ghafari<sup>®</sup><sup>1</sup>, Yeong-Cherng Liang<sup>2</sup>, Nora Tischler<sup>®</sup><sup>1</sup><sup>∞</sup>, Eric G. Cavalcanti<sup>®</sup><sup>3</sup><sup>∞</sup>, Geoff J. Pryde<sup>®</sup><sup>1</sup> and Howard M. Wiseman<sup>®</sup>



## **Experimental realisations?**

#### SCIENCE ADVANCES | RESEARCH ARTICLE

#### PHYSICS

#### **Experimental test of local observer independence**

Massimiliano Proietti<sup>1</sup>, Alexander Pickston<sup>1</sup>, Francesco Graffitti<sup>1</sup>, Peter Barrow<sup>1</sup>, Dmytro Kundys<sup>1</sup>, Cyril Branciard<sup>2</sup>, Martin Ringbauer<sup>1,3</sup>, Alessandro Fedrizzi<sup>1</sup>\*



### but... are photons friends?





Kok-Wei Bong<sup>1,4</sup>, Aníbal Utreras-Alarcón<sup>1,4</sup>, Farzad Ghafari<sup>®</sup><sup>1</sup>, Yeong-Cherng Liang<sup>2</sup>, Nora Tischler<sup>®</sup><sup>1</sup><sup>∞</sup>, Eric G. Cavalcanti<sup>®</sup><sup>3</sup><sup>∞</sup>, Geoff J. Pryde<sup>®</sup><sup>1</sup> and Howard M. Wiseman<sup>®</sup>



## **Experimental realisations?**

#### SCIENCE ADVANCES | RESEARCH ARTICLE

#### PHYSICS

#### Experimental test of local observer independence

Massimiliano Proietti<sup>1</sup>, Alexander Pickston<sup>1</sup>, Francesco Graffitti<sup>1</sup>, Peter Barrow<sup>1</sup>, Dmytro Kundys<sup>1</sup>, Cyril Branciard<sup>2</sup>, Martin Ringbauer<sup>1,3</sup>, Alessandro Fedrizzi<sup>1</sup>\*



### but... are photons friends?





Kok-Wei Bong<sup>1,4</sup>, Aníbal Utreras-Alarcón<sup>1,4</sup>, Farzad Ghafari<sup>®</sup><sup>1</sup>, Yeong-Cherng Liang<sup>2</sup>, Nora Tischler<sup>®</sup><sup>1</sup><sup>∞</sup>, Eric G. Cavalcanti<sup>®</sup><sup>3</sup><sup>∞</sup>, Geoff J. Pryde<sup>®</sup><sup>1</sup> and Howard M. Wiseman<sup>®</sup>



### yes for RQM! what is a better friend?

## **Other theorems**

arXiv:2205.12223 (quant-ph)

[Submitted on 24 May 2022 (v1), last revised 15 Jul 2022 (this version, v2)]

#### A possibilistic no-go theorem on the Wigner's friend paradox

Marwan Haddara, Eric G. Cavalcanti

**arXiv:1811.02442** (quant-ph)

[Submitted on 6 Nov 2018 (v1), last revised 7 Nov 2018 (this version, v2)]

### When Greenberger, Horne and **Zeilinger meet Wigner's Friend**

**Gijs Leegwater** 

#### Implications of Local Friendliness Violation for Quantum Causality

by 😣 Eric G. Cavalcanti <sup>1,\*</sup> 🖂 🕩 and 😣 Howard M. Wiseman <sup>2</sup> 🖂 🕩

Entropy 2021, 23(8), 925; https://doi.org/10.3390/e23080925

Received: 4 June 2021 / Revised: 1 July 2021 / Accepted: 2 July 2021 / Published: 21 July 2021

A "thoughtful" Local Friendliness no-go theorem: a prospective experiment with new assumptions to suit

Howard M. Wiseman<sup>1,2</sup>, Eric G. Cavalcanti<sup>3</sup>, and Eleanor G. Rieffel<sup>4</sup>

| Published: | 2023-09-14, <b>volume 7</b> , page 1112    |
|------------|--------------------------------------------|
| Eprint:    | arXiv:2209.08491v4                         |
| Doi:       | https://doi.org/10.22331/q-2023-09-14-1112 |
| Citation:  | Quantum 7, 1112 (2023).                    |

**arXiv:2308.16220** (quant-ph)

[Submitted on 30 Aug 2023]

### A review and analysis of six extended Wigner's friend arguments

David Schmid, Yilè Yīng, Matthew Leifer





## Motivations

### No need to modify QM: unitary evolution and Born rule are both correct

## Motivations

- •
- **Relationalism:** reality is made via interactions (*participatory realism*) •

# No need to modify QM: unitary evolution and Born rule are both correct

- No need to modify QM: unitary evolution and Born rule are both correct **Relationalism:** reality is made via interactions (*participatory realism*)
- •
- **Perspectivalism:** embrace Wigner's friend scenario ullet

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents
- No inaccessible realities: no hidden variables, or parallel worlds

- No need to modify QM: unitary evolution and Born rule are both correct
- Relationalism: reality is made via interactions (participatory realism)
- Perspectivalism: embrace Wigner's friend scenario
- Naturalism: no fundamental role of observers or conscious agents
- No inaccessible realities: no hidden variables, or parallel worlds
- Relativity and time-symmetry: wavefunction only used for inference



### Relational quantum mechanics

Carlo Rovelli

International Journal of Theoretical Physics 35, 1637–1678 (1996)



### Relational quantum mechanics

Carlo Rovelli

International Journal of Theoretical Physics 35, 1637–1678 (1996)

deriving the formalism from a set of simple physical postulates



### Relational quantum mechanics

Carlo Rovelli

International Journal of Theoretical Physics 35, 1637–1678 (1996)

deriving the formalism from a set of simple physical postulates

### quantum mechanics in terms of information theory



### Relational quantum mechanics

Carlo Rovelli

International Journal of Theoretical Physics 35, 1637–1678 (1996)

deriving the formalism from a set of simple physical postulates

incorrect notion: "observer-independent values of physical quantities."

### quantum mechanics in terms of information theory

## **New formulations**



The Oxford Handbook of ΓHE HISTORY OF DUANTUM **NTERPRETATIONS** 

CHAPTER Carlo Rovelli

https://doi.org/10.1093/oxfordhb/9780198844495.013.0044 **Published:** 19 May 2022

Foundations of Physics (2022) 52:62 https://doi.org/10.1007/s10701-022-00579-5

#### Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner

Andrea Di Biagio<sup>1</sup> · Carlo Rovelli<sup>2,3,4</sup>

### **43** The Relational Interpretation

arXiv:2203.13342 (quant-ph)

[Submitted on 24 Mar 2022 (v1), last revised 14 Apr 2022 (this version, v2)]

#### Information is Physical: Cross-Perspective Links in **Relational Quantum Mechanics**

Emily Adlam, Carlo Rovelli

### **Relative facts**

## **Relative facts**

When two systems interact, variables take values, aka facts

## **Relative facts**

When two systems interact, variables take values, aka facts

Relative values, aka relative facts.

## **Relative facts**

When two systems interact, variables take values, aka facts

Relative values, aka relative facts.

probabilities of other facts.

### The quantum state is assigned based on these facts, and used to compute



## **Relative facts**

When two systems interact, variables take values, aka facts

Relative values, aka *relative facts*.

probabilities of other facts.

### The quantum state is assigned based on these facts, and used to compute

### A third system infers an entangled state, but no facts relative to them.



## **Relative facts**

When two systems interact, variables take values, aka facts

Relative values, aka *relative facts*.

probabilities of other facts.



### The quantum state is assigned based on these facts, and used to compute

### A third system infers an entangled state, but no facts relative to them.





# Key Claims

1. Facts can happen relative to any system

- 1. Facts can happen relative to any system
- 2. No hidden variables

- 1. Facts can happen relative to any system
- 2. No hidden variables
- **3. Relations are intrinsic**

- 1. Facts can happen relative to any system
- 2. No hidden variables
- 3. Relations are intrinsic
- 4. Comparisons can only be made relative to a given system

# **Key Claims**

- 1. Facts can happen relative to any system
- 2. No hidden variables
- 3. Relations are intrinsic
- 4. Comparisons can only be made relative to a given system
- third system

### 5. Interactions between two systems results in correlations relative to a

# **Key Claims**

- 1. Facts can happen relative to any system
- 2. No hidden variables
- 3. Relations are intrinsic
- 4. Comparisons can only be made relative to a given system
- third system
- 6. "Shared" facts

### 5. Interactions between two systems results in correlations relative to a

### **Relative facts**



1

# $P(a) = \sum P(a \mid b_i) P(b_i)$

### **Relative facts**

# $P\left(a^{(W)}\right) = \sum P(a \mid b_i) P\left(b_i^{(W)}\right)$

1

### **Relative facts**



# $P(a^{(W)}) = \sum_{i}^{N} P(a \mid b_{i}) P(b_{i}^{(W)})$

### **Relative facts**

# $P\left(a^{(W)}\right) \neq \sum_{i} P(a \mid b_{i}) P\left(b_{i}^{(F)}\right)$

Interference effects are a sign of the relativity of facts

### Stable facts

# $|\psi\rangle = \sum_{i} \alpha_{i} |i\rangle_{S} \otimes |F_{i}\rangle_{F} \otimes |\psi_{i}\rangle_{E}$

### Stable facts

# $|\psi\rangle = \sum_{i} \alpha_{i} |i\rangle_{S} \otimes |F_{i}\rangle_{F} \otimes |\psi_{i}\rangle_{E}$

# $\longrightarrow \rho = \operatorname{tr}_{E} |\psi \rangle \langle \psi| = \sum_{i} |\alpha_{i}|^{2} |iF_{i}\rangle \langle iF_{i}| + O(\epsilon)$

 $\epsilon = \max_{i \neq j} |\langle \psi_i | \psi_j \rangle|^2$ 

### Stable facts

# $\rho \approx \sum_{i} |\alpha_{i}|^{2} |iF_{i}| \langle iF_{i}|$

### Stable facts

# $\rho \approx \sum_{i} |\alpha_{i}|^{2} |iF_{i}| \langle iF_{i}|$

 $P(a^{(W)}) \approx \sum P(a \mid b_i) P(b_i^{(F)})$ 

 $P(b_i^{(F)}) := |\alpha_i|^2$ 

## **Sharing facts?**

Do we see the same facts?

# $\sum |\alpha_i|^2 |iF_i \rangle \langle iF_i|$



# **Sharing facts?**

Do we see the same facts?

same basis, do they see the same outcome?

$$\sum_{i} |\alpha_{i}|^{2} |iF_{i}\rangle\langle iF_{i}\rangle$$

# If Friend measures a system S and Wigner measures the system on the



# **Sharing facts?**

Do we see the same facts?

same basis, do they see the same outcome?

what he sees that Friend saw.

$$\sum_{i} |\alpha_{i}|^{2} |iF_{i}| \langle iI$$

# If Friend measures a system S and Wigner measures the system on the

### QM predicts that the outcome of Wigner's measurement is compatible with

### $F_i | \longrightarrow | 2 \rangle | F_2 \rangle$

## **Sharing facts?**

 $\sum |\alpha_i|^2 |iF_i\rangle \langle iF_i| \longrightarrow |i_2\rangle |F_2\rangle$ 

Foundations of Physics (2022) 52:62 https://doi.org/10.1007/s10701-022-00579-5

**Relational Quantum Mechanics is About Facts, Not States:** A Reply to Pienaar and Brukner

Andrea Di Biagio<sup>1</sup> · Carlo Rovelli<sup>2,3,4</sup>

### nothing more to say:

describe physics from one perspective only

arXiv:2203.13342 (quant-ph)

[Submitted on 24 Mar 2022 (v1), last revised 14 Apr 2022 (this version, v2)]

### Information is Physical: Cross-Perspective Links in **Relational Quantum Mechanics**

Emily Adlam, Carlo Rovelli

### cross-perspective link:

measuring "reveals" the value of the relative fact

# **Emergence of objectivity**

**Decoherence** makes it *look* as if we share facts.

**Decoherence is never complete.** 

**Decoherence** is *relational*: it depends on the couplings.

Systems can be in different stability classes.





### Facts, not states

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for Relational Quantum Mechanics

<u>Jacques Pienaar</u> 🖂

### Facts, not states

 $|\uparrow_{z}\rangle_{S}|\psi_{0}\rangle_{F}+|\downarrow_{z}\rangle_{S}|\psi_{1}\rangle_{F}$ 

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for Relational Quantum Mechanics

Jacques Pienaar 🖂

### Facts, not states

### $|\uparrow_{z}\rangle_{S}|\psi_{0}\rangle_{F}+|\downarrow_{z}\rangle_{S}|\psi_{1}\rangle_{F}$

**Does this imply that the** *z* **spin is a fact for friend?** 

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for **Relational Quantum Mechanics**

Jacques Pienaar 🖂

### Facts, not states

### $|\uparrow_{z}\rangle_{S}|\psi_{0}\rangle_{F}+|\downarrow_{z}\rangle_{S}|\psi_{1}\rangle_{F}$

### Does this imply that the z spin is a fact for friend? Not necessarily.

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for Relational Quantum Mechanics

Jacques Pienaar 🖂

### Facts, not states

### $|\uparrow_{z}\rangle_{S}|\psi_{0}\rangle_{F}+|\downarrow_{z}\rangle_{S}|\psi_{1}\rangle_{F} =$

### Does this imply that the z spin is a fact for friend? Not necessarily.

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for Relational Quantum Mechanics

Jacques Pienaar 🖂

Foundations of Physics 51, Article number: 97 (2021) Cite this article

### $|\uparrow_x\rangle_S|\tilde{\psi}_0\rangle_F + |\downarrow_x\rangle_S|\tilde{\psi}_1\rangle_F$

### Facts, not states

### $|\uparrow_{z}\rangle_{S}|\psi_{0}\rangle_{F}+|\downarrow_{z}\rangle_{S}|\psi_{1}\rangle_{F}$

**Does this imply that the** *z* **spin is a fact for friend?** 

Not necessarily.

when F is microscopic, how do we decide?

Published: 04 October 2021

### A Quintet of Quandaries: Five No-Go Theorems for **Relational Quantum Mechanics**

Jacques Pienaar 🖂

=

*Foundations of Physics* **51**, Article number: 97 (2021) Cite this article

$$|\uparrow_x\rangle_S|\tilde{\psi}_0\rangle_F + |\downarrow_x\rangle_S|\tilde{\psi}_1\rangle_F$$

# When F is macroscopic, we know what variable has been measured, but

## **Consistency of relative facts**

### Relative Facts of Relational Quantum Mechan Incompatible with Quantum Mechanics

Jay Lawrence<sup>1</sup>, Marcin Markiewicz<sup>2</sup>, and Marek Żukowski<sup>2</sup>

Doi:

Citation:

https://doi.org/10.22331/q-2023-05-23-1015 Quantum 7, 1015 (2023).

| n | ics | а | re |
|---|-----|---|----|
|   |     |   |    |

# **Consistency of relative facts**

Three qubits are prepared in the GHZ state.

### **Relative Facts of Relational Quantum Mechar** Incompatible with Quantum Mechanics

Jay Lawrence<sup>1</sup>, Marcin Markiewicz<sup>2</sup>, and Marek Żukowski<sup>2</sup>

Doi:

Citation:

https://doi.org/10.22331/q-2023-05-23-1015 Quantum 7, 1015 (2023).



| n | ics | а | re |
|---|-----|---|----|
|   |     |   |    |

# **Consistency of relative facts**

### Three qubits are prepared in the GHZ state.

Alice measures them on the z basis. Get outcomes  $\mathscr{A}_i$ .

### Relative Facts of Relational Quantum Mechanics are Incompatible with Quantum Mechanics

Jay Lawrence<sup>1</sup>, Marcin Markiewicz<sup>2</sup>, and Marek Żukowski<sup>2</sup>

Doi: Citation https://doi.org/10.22331/q-2023-05-23-1015 Quantum 7, 1015 (2023).







# **Consistency of relative facts**

Three qubits are prepared in the GHZ state.

Alice measures them on the *z* basis. Get outcomes  $\mathscr{A}_i$ .

Bob measures the spins and Alice on the y basis. Gets outcomes  $\mathscr{B}_i$ .

Quantum 7, 1015 (2023).



## **Consistency of relative facts**



### Relative Facts of Relational Quantum Mechar Incompatible with Quantum Mechanics

Jay Lawrence<sup>1</sup>, Marcin Markiewicz<sup>2</sup>, and Marek Żukowski<sup>2</sup>

Doi:

Citation:

https://doi.org/10.22331/q-2023-05-23-1015 Quantum 7, 1015 (2023).

 $\mathcal{B}_{1}\mathcal{B}_{2}\mathcal{B}_{3} = +1$ 



 $\mathscr{A}_1 \mathscr{B}_2 \mathscr{A}_3 = -1$ 

 $\mathcal{B}_1 \mathcal{A}_2 \mathcal{A}_3 = -1$ 

 $(\mathscr{A}_1)^2 (\mathscr{A}_2)^2 (\mathscr{A}_3)^2 (\mathscr{B}_1)^2 (\mathscr{B}_2)^2 (\mathscr{B}_3)^2 = -1$ 

| n | ics | а | re |
|---|-----|---|----|
|   |     |   |    |

### The consistency of relative facts

No observer has access to all these facts.

An observer can compute at most one of these formulas



 $\mathcal{B}_1 \mathcal{B}_2 \mathcal{B}_3 = +1$ 

- $\mathcal{A}_1 \mathcal{A}_2 \mathcal{B}_3 = -1$
- $\mathscr{A}_1 \mathscr{B}_2 \mathscr{A}_3 = -1$

 $\mathcal{B}_1 \mathcal{A}_2 \mathcal{A}_3 = -1$ 

**Predictions about single observers are consistent.** 

### But the "list of all relative facts" is odd.

than Bell's theorems.

- than Bell's theorems.
- Experimentally underway.

- than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.

- than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.
- Decoherence hides the relationality.

- than Bell's theorems.
- Experimentally underway.
- Relational Quantum Mechanics embraces relative facts.
- **Decoherence hides the relationality.**
- Story not completely worked out.

1. How to *really* make sense of relative facts?

- 1. How to really make sense of relative facts?
- 2. Can we live without merging perspectives?

- 1. How to really make sense of relative facts?
- 2. Can we live without merging perspectives?
- **3.** Revise the resolution of Bell's theorems.

- 1. How to *really* make sense of relative facts?
- 2. Can we live without merging perspectives?
- 3. Revise the resolution of Bell's theorems.
- 4. GPTs, W-matrix, QRFs do not deal with relative facts.

- 1. How to *really* make sense of relative facts?
- 2. Can we live without merging perspectives?
- 3. Revise the resolution of Bell's theorems.
- 4. GPTs, W-matrix, QRFs do not deal with relative facts.
- 5. LF no-go theorem is a big challenge for causal thinking.

- 1. How to *really* make sense of relative facts?
- 2. Can we live without merging perspectives?
- 3. Revise the resolution of Bell's theorems.
- 4. GPTs, W-matrix, QRFs do not deal with relative facts.
- 5. LF no-go theorem is a big challenge for causal thinking.
- 6. What is a credible "Friend" for EWFS experiments?

# thank you!